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ABSTRACT 

 The use of generalized linear models and generalized estimating equations in the 

public health and medical fields are important tools for research, specifically for 

modeling clinical trials, evaluating preventive measures, and secondary data analysis. It is 

important for these researchers to have the necessary tools to analyze and model their 

data correctly. This dissertation focuses on a penalized maximum likelihood estimation 

method for generalized linear models, measures of association such as the coefficient of 

determination and R2 for generalized estimating equations, and a modified quasi-

likelihood information criterion for generalized estimation equations.  

Common problems that arise during estimation of generalized linear models are 

bias of the estimates, small sample size, or complete or quasi-complete separation of data 

points. To address these problems, the first part of this dissertation introduces a penalized 

maximum likelihood approach that includes a penalty term directly in the score function 

prior to maximization of the likelihood, and then implements this method into statistical 

software.   

 Generalized estimating equations are also an innovative way to model the within 

group correlation for longitudinal, clustered, or panel data. Currently, not many 

diagnostic statistics are available for these models. In the second part of this dissertation, 

we propose an R2 and several pseudo-R2 measures that help researchers with variable 

selection and provide a goodness of fit measure for the selected model. These 

calculations are also made accessible to researchers in statistical software. 
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Generalized estimating equations are an extension to the generalized linear model 

specifically designed to address the within group correlation. To model the within group 

correlation in generalized estimating equations, the researcher must select the working 

correlation structure. However, the current quasi-likelihood information criterion for 

selecting the working correlation structure is not efficient in that it tends to favor the 

independent structure which assumes there is no within group correlation. In the last part 

of this dissertation, we propose a modified quasi-likelihood information criterion that 

outperforms the current quasi-likelihood information criterion in that this criterion favors 

the correct structure a large majority of the time. The efficiency of the estimates are 

improved when using the modified quasi-likelihood information criterion.  
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CHAPTER 1 

INTRODUCTION 

In the public health field, generalized linear models (GLM) and generalized estimating 

equations (GEE) are widely used for analysis of clinical studies and secondary data 

analysis. It is important for these researchers to have the necessary tools to analyze and 

model their data correctly. This dissertation focuses on a penalized maximum likelihood 

estimation method for generalized linear models, measures of association such as the 

coefficient of determination and R2 for generalized estimating equations, and a modified 

quasi-likelihood information criterion for generalized estimating equations. 

Occasionally, problems with convergence of the maximum likelihood arise in 

generalized linear models (GLMs). Non-convergence of the maximum likelihood 

estimates can result from reasons such as complete separation in the data, extremely large 

values that create a difficult situation for convergence, bias, and small sample size. When 

one or more of these phenomenon occur during model estimation, researchers are limited 

in the ways to deal with this situation. Researchers are even more limited in software if 

the response variable is not a binary outcome. Firth’s penalized maximum likelihood 

estimation approach is currently only available for binary response models in the most 

widely used statistical software programs SAS, R, and Stata. 

One of the first steps in estimation of the parameters in a generalized estimating 

equation model is to specify a working correlation matrix to be used in the estimating 
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equation before maximization. If this matrix is incorrectly specified, efficiency is lost in 

the generalized estimating equations estimates.  The current criteria for selecting a 

working correlation matrix is flawed as in it favors a more simple correlation structure 

such as independent correlation matrix. The choice of the independent correlation 

structure assumes that the clusters within the data are not correlated. In other words, it 

assumes that there is no within group correlation, which we know is normally not the 

case in panel, cluster, or longitudinal data. 

Often researchers want a measure to show how much variance is explained in the 

chosen model. In multiple linear regression, the R2 measure helps researchers with 

variable selection and provides a goodness of fit measure for the selected model. 

Currently this type of measure is not readily available for models with clustered, 

longitudinal or panel data. Non-linear regression models also have pseudo-R2 measures 

that are not available for generalized estimating equations models. One difference 

between generalized linear models and generalized estimating equations is the 

availability of the maximum likelihood. For generalized estimating equation models, the 

maximum likelihood is not available, and the quasi-likelihood is used. For pseudo- R2 

measures that include the maximum likelihood within the calculation, a different 

approach will have to be used.    

In this dissertation work, I will accomplish three tasks. First, I will extend a 

penalized maximum likelihood estimation method to generalized linear models and 

implement the penalized maximum likelihood estimation method in Stata, a statistical 

software. Second, I will propose an R2 and some pseudo-R2 measurements for 

generalized estimating equations and create a post-estimation command available for use 
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in Stata. Third, I will propose a modified quasi-likelihood information criterion that 

identifies the true underlying covariance structure better than the currently available 

quasi-likelihood information criterion. 
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CHAPTER 2 

GENERALIZED LINEAR MODELS 

This chapter presents an introduction to generalized linear models with emphasis on 

model building. Common link functions and variance functions are presented and 

discussed. 

2.1 INTRODUCTION 

Generalized Linear Model theory was introduced by Nelder and Wedderburn [1972]. 

This theory provided a unity for an entire class of regression models. The basis of this 

unity is a focus on the single-parameter exponential family of probability distributions. 

Member distributions of the exponential family include the normal, Poisson, binomial, 

gamma, inverse Gaussian, negative binomial, and geometric distributions. The 

exponential family notation which includes a location (mean) parameter and a variance 

which is written as a function of the mean times a scalar parameter allows the 

specification of models for all exponential family member distributions including those 

which are continuous, count, binary, discrete, and proportional outcomes. 

The standard linear regression model can be derived from several assumptions. 

The first assumption is that each observation of the response variable originates from the 

normal distribution: 𝑦𝑖~𝑁(𝜇𝑖, 𝜎𝑖
2). The second assumption is that the distributions for all 

observations have a common variance: 𝜎𝑖
2 = 𝜎2 for all 𝑖. The third assumption is that 

there is a direct relationship between the linear predictor and the expected value of the 

model: 𝑥𝑖𝛽 = 𝑔(𝜇𝑖) where 𝑔() is the identity function linking the linear predictor to the 
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mean, 𝑥𝑖 is a vector of covariates for the 𝑖th observation, and 𝐸(𝑦) = 𝜇 =  𝛽0 + 𝛽1𝑋1 +

⋯ + 𝛽𝑝𝑋𝑝. The goal of the generalized linear model is to specify the relationship between 

the response variable and its’ predictors.  Note that the properties of the estimators do not 

depend on the assumption of normality. 

Generalized linear models are developed by relaxing the assumptions of the 

standard linear regression model. An initially nonlinear relationship can be restructured 

into a linear relationship through the linear predictor and the mean. Generalized linear 

models are defined by the specified distribution (variance function) and the link function. 

The assumptions of the generalized linear model as stated by Breslow [1996] are that the 

observations are independent, and that the variance function 𝑣(𝜇), the scale factor 𝑎(𝜙), 

and the link function are correctly specified, the explanatory variables are in the correct 

form, and the residuals have the correct distribution.  

2.2 MODEL BUILDING 

The components of a generalized linear model are similar to the components of the 

standard linear regression model. The first component needed is the response variable, 𝑦, 

for which the conditional variance follows that of a distribution belonging to the 

exponential family. The second component needed is a linear systematic component (the 

linear predictor), 𝜂 = 𝑿𝛽, the product of the parameters 𝛽 and the design matrix 𝑿. The 

third component is the link function that relates the linear predictor to the mean. The 

fourth component is the variance function 𝑣(𝜇) defining the variance of the response 

variable in terms of its mean 𝜇, 𝑉(𝑦) = 𝑎(𝜙)𝑣(𝜇), where 𝑎(𝜙) is the scale factor and the 

variance is allowed to change with the covariates as a function of the mean. 
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 Generalized linear models are formulated within the framework of the exponential 

family of distributions written as 

𝑓𝑦(𝑦; 𝜃, 𝜙) = exp {
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)} 

where 𝜃 is the canonical parameter of location and 𝜙 is the parameter of scale. The 

canonical parameter relates to the mean and the scalar parameter relates to the variance 

for the exponential family members.  

 Since the observations, 𝑦𝑖, are independent, the joint probability density function 

of the sample of n observations, given the parameters 𝜙 and 𝜃, is defined by the product 

of the densities of the individual observations. Combining these densities, the joint 

probability density function expressed as a function of 𝜙 and 𝜃 given the observations, 𝑦𝑖 

into what is called the likelihood, L, is written as 

𝐿(𝜃, 𝜙; 𝑦1, 𝑦2, … 𝑦𝑛) = ∏ exp {
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎(𝜙)
+ 𝑐(𝑦𝑖, 𝜙)}

𝑛

𝑖=1

 

 To obtain estimates of 𝜙 and 𝜃 that maximize the likelihood function, it is easier 

to work with the log likelihood, 

ℒ(𝜃, 𝜙; 𝑦1, 𝑦2, … 𝑦𝑛) = ∑ {
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎(𝜙)
+ 𝑐(𝑦𝑖, 𝜙)}

𝑛

𝑖=1

 

since the values that maximize the likelihood are the same values that maximize the log 

likelihood. The canonical parameter is represented by 𝜃, 𝑏(𝜃) is the cumulant, 𝜙 is the 

dispersion parameter, and 𝑐() is the normalization parameter. This notation also provides 

simple calculations of the first and second derivatives for maximum likelihood estimation 

so that 𝐸(𝑦) = 𝑏′(𝜃) and 𝑉(𝑦) = 𝑏′′(𝜃)𝑎(𝜙). 
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 Each distribution that is part of the exponential family has a unique canonical 

link, cumulant, and expectation of the canonical link. Table 2.1 shows 𝜃, 𝑏(𝜃), and 𝑏′(𝜃) 

for members of the single parameter exponential family. 

To obtain maximum likelihood estimates, substitute the link function of the linear 

predictor for the expected value of the outcome 𝜇. The estimating equation can be written 

as 

[
𝜕𝐿

𝜕𝛽
] = 𝑋𝑇 (

𝑦 − 𝐸(𝑦)

𝑎(𝜙)
)

1

𝑣(𝐸(𝑦))

𝜕𝑔−1(𝜂)

𝜕𝜂
= [𝟎𝑝𝑥1] 

Here the linear predictor 𝜂 is equated to the canonical link 𝜃. Any monotonic link 

function that maps the linear predictor to the range implied to the variance function can 

be chosen. 

2.3 LINK FUNCTIONS 

Each distribution that is a member of the exponential family has compatible link 

functions meant to be used under different situations. The Gaussian family model 

assumes a normally distributed response variable and generally uses the identity link. The 

identity link assumes a continuous response and can take on negative or positive values. 

The log-normal model is also based on the Gaussian distribution but uses the log link. 

The log link is used for response data that only takes on positive values on the continuous 

scale. 

The gamma family model is used for modelling outcomes for which the response can 

take on only values greater than or equal to zero. This model is generally used with 

continuous response data but can also be used with count data where the count data take 

the shape of a gamma distribution. The gamma model is compatible with the reciprocal 

link for modelling the rate or the log link for modelling the log-rate. The gamma model 
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can also be used with the identity link to model duration data and assumes there is a one-

to-one relationship between 𝜂 and 𝜇. 

 The inverse Gaussian distribution is most appropriate to use when modeling a 

nonnegative response that has a high initial peak, quick drop, and long right tail or when 

modeling discrete data. The log and identity links are commonly used with such 

outcomes and are similar to the gamma model.  

 The binomial-logit family consisting of the Bernoulli/binomial distributions are 

used to model discrete or proportional responses. This family can be used to model 

number of successes out of a number of trials. The links that are commonly used with this 

family are logit, probit, log-log, complementary log-log, identity, log, inverse, and log-

complement. The logit link is equivalent to logistic regression where log-odds are 

modeled while the probit link is used to model data in terms of normal-based 

probabilities. The complementary log-log defines a sigmoid curve where the upper part is 

more stretched out than the logit or probit, and the log-log defines a sigmoid curve where 

the lower part is more stretched out than the logit or probit. The log link produces 

estimates of the log risk ratio, the log-complement estimates log health ratio, and the 

identity link yields estimates of the risk difference.  

 The Poisson family is used to model response variables that are counts or rates. 

The identity link measures the rate difference while the log link is used to measure the 

difference in the log of the expected incidence rate ratio.  

The negative-binomial distribution can also be used to model count outcomes. This 

model is useful with overdispersed (relative to the Poisson) count data. It can be derived 

as a Poisson-gamma mixture. The log link here also estimates log incidence rate-ratios 
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like the Poisson model. The geometric family is the negative-binomial with the scale 

parameter 𝜙 equal to 1. The log link for the geometric family also measures incidence 

rate-ratios. 
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Table 2.1 Corresponding canonical link, cumulant, and expected value of 𝑦 

Distribution 𝜃 𝑏(𝜃) 𝑏′(𝜃) 

Binomial 𝑙𝑜𝑔 (
𝜃

1−𝜃
)  log (1 + exp(𝜃))  

exp (𝜃)

1+exp (𝜃)
  

Normal 𝜃 
𝜃2

2
  𝜃  

Poisson log (𝜃)  exp(𝜃)  exp(𝜃)  

Inverse Gaussian 
1

2
𝜃2  √2𝜃  

1

√2𝜃
  

Gamma 
1

𝜃
  − log (

1

𝜃
)  

1

𝜃
  

Negative Binomial log (
𝛼𝜃

1+𝛼𝜃
)  

log (1−exp(𝜃))

𝛼
  

1

𝛼
(

exp (𝜃)

1−exp (𝜃)
)  

 

Table 2.2: Common link and variance function combinations 

Density 
Link Function Variance Function 

Gaussian 
Identity Gaussian 

Bernoulli 
Logit Bernoulli 

Bernoulli 
Probit Bernoulli 

Poisson 
Log Poisson 

Negative Binomial 
Log Poisson 

Negative Binomial 
Negative Binomial Negative Binomial 

Gamma 
Reciprocal Gamma 
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Table 2.3: Link functions 

Link function 𝜂 = 𝑔(𝜇)  

Identity 𝜇  

Logit log (
𝜇

1−𝜇
)  

Log log (𝜇)  

Negative Binomial log (
𝛼𝜇

1+𝛼𝜇
)  

Log-complement log (1 − 𝜇)  

Log-log −log (− log(𝜇))  

Probit Φ−1(𝜇)  

Reciprocal 
1

𝜇
  

 

Table 2.4: Variance functions  

Variance Function 𝑣(𝜇)  

Gaussian 1 

Bernoulli 𝜇(1 − 𝜇)  

Binomial(k) 𝜇 (1 −
𝜇

𝑘
)  

Poisson 𝜇  

Gamma 𝜇2  

Inverse Gaussian 𝜇3  

Negative Binomial 𝜇 + 𝛼𝜇  

Power(k) 𝜇𝑘  
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CHAPTER 3 

PENALIZED MAXIMUM LIKELIHOOD APPROACH FOR GENERALIZED LINEAR 

MODELS 

This chapter discusses a penalized maximum likelihood method for generalized linear 

models. The derivation is described and Stata software and examples are displayed.  

3.1 INTRODUCTION 

This section focuses on the development of a method and its implementation into 

statistical software Stata. A new Stata command for estimating generalized linear models 

via penalized maximum likelihood is presented. In the past, only a subset of such models 

have been available to Stata users through the user-written firthlogit (Coveney 

[2008]) command for binomial models (using on the logit link function). The new 

firthglm command estimates any generalized linear model supported by the glm 

command using penalized log-likelihood. 

3.2 CURRENT ISSUES 

Firth's penalized maximum likelihood (Firth [1993]) approach was originally developed 

to reduce the bias of maximum likelihood estimates. The asymptotic bias of the 

maximum likelihood estimate 𝜃 can be written as 

𝑏(𝜃) =
𝑏1(𝜃)

𝑛
+

𝑏2(𝜃)

𝑛2
+ ⋯ 

 Previously two approaches were used to correct for this bias. The Jackknife 

method which requires no theoretical calculation but loses precision in the estimate and 
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the substitution method. The substitution method substitutes 𝜃 for the unknown 𝜃 in  

𝑏(𝜃) and gives the second order efficient, bias-corrected estimate as 𝜃𝐵𝐶 =  𝜃 −  
𝑏1(�̂�)

𝑛
  . 

The jackknife and 𝜃𝐵𝐶  are bias-reducing only in an asymptotic sense when 𝜃 is infinite. 

Both of these methods use a corrective approach rather than a preventive approach. 

 This bias arises from a combination of the unbiasedness of the score function at 

the true value of 𝜃 and the curved nature of the score function. To remove bias from the 

maximum likelihood estimator, Firth's method adds a bias correcting term to the score 

function. For generalized linear models (GLMs), our target is the canonical parameter of 

an exponential family, and in this case, the bias term is simply the Jeffreys invariant 

prior. Jeffreys prior removes the bias, and the end result is a penalized log-(pseudo) 

likelihood function. 

 Firth showed that for a random sample from a normal distribution, the bias-

reducing penalty function produces an exactly unbiased estimate for 𝜃 for sample sizes 

larger than three. For logisitic regression, the maximum likelihood estimate of 𝛽 is found 

to be biased away from the point 𝛽 = 0 which requires bias correction with some degree 

of shrinkage of 𝛽 towards this point. When the target parameter is the canonical 

parameter of an exponential family, the estimate is second-order efficient, which means 

Jeffreys prior is sufficient in removing the bias from the maximum likelihood estimate. 

 In 2002, Heinze and Schemper claimed that this method developed by Firth was 

also useful in solving the problem of separation (Heinze and Schemper [2002]). With 

regard to the relationship of a covariate to an outcome variable in a data set, there are 

three configurations of 𝑛 observations we can observe: complete separation, quasi-

complete separation, and overlap. In complete separation, the outcome variable separates 
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one or more predictor variables completely. For example, consider a binary outcome 

variable and a continuous predictor. If all outcomes with value 1 have corresponding 

predictor values less than 4 while all outcomes with value 0 have corresponding predictor 

values greater than 6, we have complete separation. In this situation, the maximum 

likelihood estimate of the regression parameter on the predictor variable does not exist or 

tends to infinity. 

 Quasi-complete separation exists when the outcome variable separates one or 

more predictor variables to a certain point. Consider the previous example of complete 

separation where the corresponding predictor values are separated similarly, but now the 

predictor values for both outcomes (0 and 1) include the value 5. Here the only 

probability to estimate is the probability the predictor value equals 5. All the other 

predictor values are separated by the outcome variable. In this situation, the maximum 

likelihood estimate of the regression parameter on the predictor variable also does not 

exist. 

 Overlap exists when there is no separation in the data, and this situation is 

generally not a problem for parameter estimation. Since there is no separation, the 

maximum likelihood estimate exists. 

 When separation arises, there are a number of options to consider. One can omit 

the variable from the model, allowing estimates to be obtained for the other parameters. 

By omitting the variable, the information about the effect of the possible risk factor is 

lost. One can manipulate the data by using an ad hoc adjustment such as changing cell 

frequencies or forcing the largest or smallest observation to have the opposite effect. This 

option could be misleading and also has undesirable properties. One option in Stata is to 
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use exact regression (such as exlogit or expoisson) which replaces the maximum 

likelihood estimate by a median unbiased estimate where the estimate of a parameter and 

inference are based on the exact null distribution of the sufficient statistic conditional on 

the observed values of the other sufficient statistics. This method is useful with one 

variable but cannot be used when two or more variables lead to degenerate distributions 

of all sufficient statistics. 

 This penalized maximum likelihood method is currently available for logistic 

regression, but these situations are not limited to binary outcomes and can occur for any 

specified generalized linear model. In this manuscript we introduce Firth's penalized 

maximum likelihood estimation in Section 3.3. In Section 3.4, the Stata syntax is shown 

for the new firthglm command, and the examples are contained in Section 3.5. 

3.3 METHODS 

A bias reduction of maximum likelihood estimates in generalized linear models was 

introduced by Firth [1993]. Instead of taking a corrective approach by estimating the 

maximum likelihood and then adding a penalty term, Firth modifies the score function 

and then produces the maximum likelihood estimate. This is particularly useful when the 

maximum likelihood estimate does not exist or is infinite. 

The penalized likelihood equation written within the framework of the exponential family 

of distributions is defined as 

𝐿(𝜃, 𝜙; 𝑦1, 𝑦2, … , 𝑦𝑛) = ∏ exp {
𝑦𝑖𝜃𝑖 − 𝑏𝜃𝑖

𝑎(𝜙)
+ 𝑐(𝑦𝑖, 𝜙)} |𝑖(𝜃)|1/2

𝑛

𝑖=1
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where 𝑦1, 𝑦2, … , 𝑦𝑛 are the sample of independent observations, 𝜃𝑖 is the canonical 

location parameter for the 𝑖th observation, 𝜙 is the scale parameter, and |𝑖(𝜃)|1/2 is the 

Jeffreys [1946] invariant prior. 

 We can take the log of equation 2 to obtain the penalized log-likelihood 

ℒ(𝜃, 𝜙; 𝑦1, 𝑦2, … , 𝑦𝑛) = ∑ {
𝑦𝑖𝜃𝑖 − 𝑏𝜃𝑖

𝑎(𝜙)
+ 𝑐(𝑦𝑖, 𝜙)} +

1

2
log

𝑛

𝑖=1

|𝑖(𝜃)| 

since the values that maximize the likelihood also maximize the log-likelihood. The 

estimates can then be computed using Stata's ml optimization commands. 

 Because the likelihood is written in exponential family notation (Hardin and Hilbe 

[2011]), we can specify penalized models for not only binary outcomes, but also count, 

proportional, discrete, and continuous outcomes. 

 Firth notes that bias reduction can be affected by the number of factors, especially 

the skewness of the maximum likelihood estimate. In this case, one might sacrifice 

precision in the estimates. However, in his paper, Firth states that when employing 

logistic regression, the maximum likelihood estimate is unbiased and reduces the 

variance of the parameter estimates. We are to expect smaller standard errors when using 

firthglm. Confidence intervals will be affected since in reality, the estimate's lower 

bound should be negative infinity when the maximum likelihood estimate tends to 

negative infinity, and the upper bound should be positive infinity when the maximum 

likelihood estimate tends to positive infinity. 

3.4 STATA SYNTAX 

Software accompanying this section includes the command files as well as supporting 

files for prediction and help. In all of the following syntax diagrams, unspecified options 



www.manaraa.com

 

17 

include the usual collection of maximization and display options available to all 

estimation commands. 

 Equivalent in syntax to the to the glm command, the basic syntax for the 

penalized generalized linear model is given by 

firthglm [𝑑𝑒𝑝𝑣𝑎𝑟  [𝑖𝑛𝑑𝑒𝑝𝑣𝑎𝑟𝑠] ]     [𝑖𝑓]    [𝑤𝑒𝑖𝑔ℎ𝑡]    [   , ∗] 

It should be noted, that the penalized log-likelihood maximization method is 

implemented using Stata's ml commands specifying the d0 optimization method. As 

such, the firthglm command does not support some of the vce()options that are 

available in the glm command specifically, the firthglm command does not support 

opg, unbiased, robust, or cluster. Similarly, the firthglm command does not 

support the pweight option. 

Help files are included for the estimation and post-estimation specifications of 

these models. The help files include example specifications. 

3.5 REAL DATA ANALYSIS 

All examples were analyzed using the 12.1 version of Stata (Stata Corp, College Station, 

TX). We show two examples in this section. The first example demonstrates bias 

reduction when using a Poisson regression. The second example shows how the 

penalized maximum likelihood method is useful when there is separation in the data and 

the maximum likelihood does not converge. This example uses logistic regression, and 

we also compare the firthglm method with bootstrapping. 

 The first example uses a ship accident dataset from McCullagh and Nelder 

[1989], listed on page 205 of the text. This dataset includes the number of reported 

damage incidents, accident, the collective months of service by ship type, service, 



www.manaraa.com

 

18 

the period of operation, op_00_00, the construction year, co_00_00, and the type of 

ship, ship. The exposure in the model is the collective months of service. To better 

define some variables, we use the indicator variables op_00_00 to show the starting and 

ending years of operation and the indicator variables co_00_00 to show the starting and 

ending years of construction. For example, op_70_74 shows whether the ship was in 

operation from 1970 to 1974, and co_60_64 shows whether the ship was in 

construction from 1960 to 1964. There is a total of 34 full observations in this dataset. 

 We run a Poisson model of accident on op_75_79, co_65_69, 

co_70_74, co_75_79, and ship with a log link. To obtain risk ratios, we use the 

eform option. 

The results of the model are in Table 3.1. The results show that whether the ship 

was in service between 1975 and 1979 is a significant predictor of number of accidents. 

Also, whether the ship was constructed between 1965 and 1969 or between 1970 and 

1974 are also significant predictors of number of accidents. The fourth indicator variable 

co_75_79 is not significant with a p-value of 0.052. Ship types 2 and 3 are significantly 

different from ship type 1 while ship type 4 and 5 are not significantly different from ship 

type 1. 

 To examine bias reduction, we can run firthglm using the same model options. 

From the output in Table 3.2, we can see that the penalized log likelihood of -51.4 is a 

good bit smaller than the log likelihood of -68.3. The Aikaike Information Criteria (AIC) 

for the penalized maximum likelihood method is smaller than the non-penalized method 

(3.55 compared to 4.55). The deviance for the penalized method is slightly larger than the 

deviance for the non-penalized method (38.8 compared to 38.7). We have similar results 
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for all variables in the model except co_75_79. In the non-penalized GLM model, this 

variable was not significant, but is now significant with a p-value of 0.047. 

The command firthglm can be applied to any generalized linear model and 

canonical link supported by Stata's glm command using penalized log-likelihood. We 

illustrate another model using data provided by Dr. José Villa at the USDA-ARS Honey 

Bee Breeding, Genetics and Physiology Laboratory (Deroche et al. [2011]) where 

convergence is not achieved in a binary response regression model with a log-log link. 

Convergence is not achieved due to the issue of complete separation in the data. 

  These data contain the levels of mite infestation (mites) in a longitudinal study 

on bee colonies from nine different genetic origins. Measurements of mite infestation 

were recorded every season over a seven year period as well as the status (dead or 

alive) of each colony. Here origin 9 and season 4 are the referent groups. 

Two genetic origins did not experience any deaths due to the level of mite 

infestation (origin 1 and origin 4). This is an example of separation. The effect of 

this separation on the model can be seen when using Stata's glm command. We illustrate 

a binomial model of status on mites, origin1-origin8, and season1-

season3 with a log-log link. We can see in Table 3.3 that the estimates for origin1 

and origin4 are -2.45 and -2.17 with associated standard error estimates which are 

approximately 104 and 88. The maximum likelihood estimates of these terms tend toward 

negative infinity which implies the odds ratio is tending toward zero. From this model, 

we can see that the only significant predictor of status is mites. 

This inability to reach convergence is fixed by estimating a penalized maximum 

likelihood model with the firthglm command and family(binomial) with 
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link(loglog). The parameter estimates without convergence problems have 

estimates and standard errors slightly smaller than those given by glm, but the significant 

predictors of status have not changed. These results can be seen in Table 3.4. 

Another alternative to the penalized maximum likelihood method is to use 

vce(bootstrap) within the glm model. The results of this method can be seen in 

Table 3.5. The standard errors obtained are larger than those obtained through 

firthglm but still much smaller than those from glm. The parameter estimates for 

origin1 and origin4 are still large, but now they are significant with p-values of 

0.011 and 0.014 respectively. Bootstrapping is efficient in giving smaller standard errors, 

but in this case, gives misleading results. The option vce(bootstrap) is also 

available within the firthglm command. 

To explore other options for dealing with separation, we ran a regular logistic 

model using family(binomial) and link(logit). We tried to compare this to 

using exlogistic, but this method failed to estimate the model and combat the issue 

of separation. 

3.5 CONCLUSIONS AND DISCUSSIONS 

This penalized maximum likelihood method for generalized linear models has 

been proven to be useful in bias reduction and solving the problem of separation in data. 

In the past, this method was only available in software for a binary outcome using logistic 

models. The firthglm command broadens this penalized maximum likelihood method 

to all generalized linear models regardless of the structure of the response variable or the 

canonical link used in modeling. 
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Table 3.1 GLM Poisson model with log link 

 
gen double exposure = ln(service) 

6 missing values generated) 

glm accident op_75_79 co_65_69 co_70_74 co_75_79 i.ship, 

family(poiss) link(log) offset(exposure) eform nolog 

 

Generalized linear models No. of obs = 34 

Optimization : ML Residual df = 25 

 Scale parameter = 1 

Deviance = 38.69505154 (1/df) Deviance = 1.547802 

Pearson = 42.27525312 (1/df) Pearson = 1.69101 

Variance function: V(u) = u [Poisson] 

Link function : g(u) = ln(u) [Log] 

 AIC = 4.545928 

Log likelihood = -68.28077143 BIC = -49.46396 

  

accident IRR 
OIM 

Std. Err. 
z P>|z| [95%Conf. Interval] 

op_75_79 1.468831 .1737218 3.25 0.001 1.164926 1.852019 

co_65_69 2.008002 .3004803 4.66 0.000 1.497577 2.692398 

co_70_74 2.26693 .384865 4.82 0.000 1.625274 3.161912 

co_75_79 1.573695 .3669393 1.94 0.052 .9964273 2.485397 

ship       

2 .5808026 .1031447 -3.06 0.002 .4100754 . 8226088 

3 .502881 .1654716 -2.09 0.037 .2638638 .9584087 

4 .926852 .2693234 -0.26 0.794 .5244081 1.638141 

5 1.384833 .3266535 1.38 0.168 .8722007 2.198762 

       

_cons .0016518 .0003592 -29.46 0.000 .0010786 .0025295 

exposure 1 (offset)     
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Table 3.2 Penalized GLM Poisson model with log link 

firthglm accident op_75_79 co_65_69 co_70_74 co_75_79 

i.ship, family(poiss) link(log) offset(exposure) eform 

nolog 

 

Generalized linear models No. of obs = 34 

Optimization : ML Residual df = 25 

 Scale parameter = 1 

Deviance = 38.78425338 (1/df) Deviance = 1.55137 

Pearson = 41.00930919 (1/df) Pearson = 1.640372 

Variance function: V(u) = u [Poisson] 

Link function : g(u) = ln(u) [Log] 

 AIC = 3.554387 

Log likelihood = -51.42457974 BIC = -49.37476 

  

accident IRR 
OIM 

Std. Err. 
z P>|z| [95%Conf. Interval] 

op_75_79 1.467798 .1733692 3.25 0.001 1.164465 1.850146 

co_65_69 2.003015 .2988503 4.66 0.000 1.49515 2.683389 

co_70_74 2.262953 .3833049 4.82 0.000 1.623666 3.153946 

co_75_79 1.584269 .3677294 1.98 0.047 1.005204 2.496916 

ship       

2 .5757154 .1017826 -3.12 0.002 .4071188 .8141315 

3 .5179367 .1675552 -2.03 0.042 .2747316 .9764384 

4 .9416689 .270467 -0.21 0.834 .5363093 1.653412 

5 1.389521 .3255163 1.40 0.160 .8779272 2.199237 

       

_cons .0016818 .0003642 -29.46 0.000 .0011002 .0025708 

exposure 1 (offset)     
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Table 3.3 GLM binomial model with log-log link 

glm status mites b4.seasons b9.origins, fam(binomial) 

link(loglog) nolog 

 

Generalized linear models No. of obs = 331 

Optimization : ML Residual df = 318 

 Scale parameter = 1 

Deviance = 206.9444987 (1/df) Deviance = .6507689 

Pearson = 315.5780133 (1/df) Pearson = .9923837 

Variance function: V(u) = u*(1-u) [Binomial] 

Link function : g(u) = -ln(-ln(u)) [Log-Log] 

 AIC = .7037598 

Log likelihood = -103.4722493 BIC = -1638.129 

  

status Coef. 
OIM 

Std. Err. 
z P>|z| [95%Conf. Interval] 

mites .5884078 .172608 3.41 0.001 .2501024 .9267133 

       

seasons       

1 .0925229 .2275317 0.41 0.684 -.353431 .5384769 

2 -.2882072 .2621791 -1.10 0.272 -.8020689 .2256544 

3 -.1231914 .2426097 -0.51 0.612 -.5986977 .352315 

       

origins       

1 -2.446689 103.9552 -0.02 0.981 -206.1952 201.3018 

2 .3107892 .3712186 0.84 0.402 -.4167859 1.038364 

3 -.0229646 .3548255 -0.06 0.948 -.7184097 .6724805 

4 -2.166469 88.2183 -0.02 0.980 -175.0712 170.7382 

5 .6283637 .5669993 1.11 0.268 -.4829344 1.739662 

6 .9753662 .6890866 1.42 0.157 -.3752188 2.325951 

7 -.002432 .3758121 -0.01 0.995 -.7390102 .7341462 

8 .276403 .6358697 0.43 0.664 -.9698788 1.522685 

       

_cons -1.096796 .3952132 -2.78 0.006 -1.8714 -.3221925 
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Table 3.4 Penalized GLM binomial model with log-log link 

firthglm status mites b4.seasons b9.origins, fam(binomial) 

link(loglog) nolog 

 

Penalized generalized linear models No. of obs = 331 

Optimization : PML Residual df = 318 

 Scale parameter = 1 

Deviance = 206.9444987 (1/df) Deviance = .6507689 

Pearson = 315.5780133 (1/df) Pearson = .9923837 

Variance function: V(u) = u*(1-u) [Binomial] 

Link function : g(u) = -ln(-ln(u)) [Log-Log] 

 AIC = .7037598 

Log likelihood = -103.4722493 BIC = -1638.129 

  

status Coef. 
OIM 

Std. Err. 
z P>|z| [95%Conf. Interval] 

mites .5547919 .1654294 3.35 0.001 .2305562 .8790277 

       

seasons       

1 .0737509 .219216 0.34 0.737 -.3559045 .5034062 

2 -.2744021 .2493442 -1.10 0.271 -.7631077 .2143036 

3 -.1188671 .2327333 -0.51 0.610 -.5750159 .3372817 

       

origins       

1 -.6938187 .5873771 -1.18 0.238 -1.845057 .4574192 

2 .2788829 .3545535 0.79 0.432 -.4160292 .973795 

3 -.0426837 .3372096 -0.13 0.899 -.7036024 .6182349 

4 -.6047809 .5269037 -1.15 0.251 -1.637493 .4279315 

5 .5826037 .5338476 1.09 0.275 -.4637183 1.628926 

6 .8637302 .6364989 1.36 0.175 -.3837847 2.111245 

7 -.0243892 .3586332 -0.07 0.946 -.7272974 .678519 

8 .2827737 .5829796 0.49 0.628 -.8598453 1.425393 

       

_cons -1.042334 .3732566 -2.79 0.005 -1.773903 -.3107642 
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Table 3.5 Bootstrap GLM binomial model with log-log link 

glm status mites b4.seasons b9.origins, fam(binomial) 

link(loglog) vce(bootstrap) nolog 

(running glm on estimation sample) 

Bootstrap replications (50) 

 

Generalized linear models No. of obs = 331 

Optimization : ML Residual df = 318 

 Scale parameter = 1 

Deviance = 206.9444987 (1/df) Deviance = .6507689 

Pearson = 315.5780133 (1/df) Pearson = .9923837 

Variance function: V(u) = u*(1-u) [Binomial] 

Link function : g(u) = -ln(-ln(u)) [Log-Log] 

 AIC = .7037598 

Log likelihood = -103.4722493 BIC = -1638.129 

  

status 
Observed 

Coef. 

Bootstrap 

Std. Err. 
z P>|z| 

Normal  

[95%Conf. 

-based 

Interval] 

mites .5884078 .1770143 3.32 0.001 .2414662 .9353494 

       

seasons       

1 .0925229 .2458477 0.38 0.707 -.3893298 .5743756 

2 -.2882072 2.07542 -0.14 0.890 -4.355955 3.779541 

3 -.1231914 .1877112 -0.66 0.512 -.4910986 .2447159 

       

origins       

1 -2.446689 .9572005 -2.56 0.011 -4.322767 -.5706107 

2 .3107892 .8979404 0.35 0.729 -1.449142 2.07072 

3 -.0229646 .8877846 -0.03 0.979 -1.76299 1.717061 

4 -2.166469 .8853953 -2.45 0.014 -3.901812 -.4311264 

5 .6283637 .9077334 0.69 0.489 -1.150761 2.407489 

6 .9753662 1.708581 0.57 0.568 -2.373391 4.324123 

7 -.002432 .9998806 -0.00 0.998 -1.962162 1.957298 

8 .276403 2.27747 0.12 0.903 -4.187357 4.740163 

       

_cons -1.096796 .8921839 -1.23 0.219 -2.845444 .6518522 
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CHAPTER 4 

GENERALIZED ESTIMATING EQUATIONS 

This chapter introduces generalized estimating equations and its link to generalized linear 

models.  The extension of the working correlation matrix is discussed and the quasi-

likelihood is introduced. 

4.1 INTRODUCTION 

One vital assumptions of generalized linear models is independence of the observations. 

This assumption is violated when the data may be grouped in some manner such as 

patients from the same hospital or when multiple observations are made on the same 

subject over time. There are multiple ways to address clustered, panel or longitudinal 

data, and each method has its own advantages and limitations. The naïve way to address 

this type of data is to ignore the panel structure of the data yielding a pooled 

(independence) estimator. This method results in a consistent estimator but one that is not 

efficient leading to (possibly) unreliable standard error estimates. Another way to address 

panel data is to include an effect for each panel in the estimating equation. This method 

allows fixed or random effects and conditional or unconditional effects. When the data 

include a finite number of panels in a population where each panel is represented in the 

sample, it is more reasonable to consider an unconditional fixed effects estimator. 

However, if there exists an infinite number of panels in the population, it is more 

reasonable to consider a conditional fixed effects estimator.  Here one can include a fixed 

incremental change per group.  A conditional fixed effects estimator is one for which the 
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model conditions out the fixed effects from the estimation leading to a log-likelihood 

which does not depend on the fixed effects. Here one can make inferences about 

population averages and where the mean response is conditional only on covariates. Also 

known as subject-specific models, the random effects model allows regression 

coefficients (intercept and slope) to vary from person to person according to a random 

effects distribution. The transitional Markov model represents the probability distribution 

at each time point as conditional on the previous time point and is usually estimated using 

Gibbs sampling. An increasingly popular alternative introduced by Liang and Zeger 

[1986] is known as Generalized Estimating Equations. 

4.2 EXTENSION OF GENERALIZED LINEAR MODELS 

In their manuscript, Liang and Zeger [1986] provide an extension to generalized linear 

models which they refer to as population-averaged generalized estimating equations. This 

method induces an interpretation of the coefficients as population averages and 

introduces the dependency (non-independence) of the observations directly into the 

estimating equation of the pooled estimator. The estimating equation in a generalized 

linear model which assumes independence can be written as 

[
𝜕𝐿

𝜕𝛽
] = ∑ 𝑋𝑖

𝑇𝐷

𝑛

𝑖=1

(
𝜕𝑔−1(𝜂𝑖)

𝜕𝜂𝑖
) (𝑣(𝐸(𝑦𝑖)))−1 (

𝑦𝑖 − 𝐸(𝑦𝑖)

𝑎(𝜙)
)

= ∑ 𝑋𝑖
𝑇𝐷

𝑛

𝑖=1

(
𝜕𝑔−1(𝜂𝑖)

𝜕𝜂𝑖
) (𝑣(𝐸(𝑦𝑖))

−
1
2)

𝑇

𝐼(𝑛𝑖)𝑣(𝐸(𝑦𝑖))
−

1
2 (

𝑦𝑖 − 𝐸(𝑦𝑖)

𝑎(𝜙)
) 

where 𝐼(𝑛𝑖) is the identity matrix representing the within-group correlation (assumed to 

be independent). One can parameterize an alternative correlation matrix to model the 

within-group correlation structure by replacing the identity matrix with a working 

correlation 𝑅(𝛼) so that the estimating equation is now written as 
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[
𝜕𝐿

𝜕𝛽
] = ∑ 𝑋𝑖

𝑇𝐷

𝑛

𝑖=1

(
𝜕𝑔−1(𝜂𝑖)

𝜕𝜂𝑖
) (𝑣(𝐸(𝑦𝑖))

−
1
2)

𝑇

𝑅(𝛼)𝑣(𝐸(𝑦𝑖))
−

1
2 (

𝑦𝑖 − 𝐸(𝑦𝑖)

𝑎(𝜙)
) 

where 𝛼 is a vector of parameters through which the matrix 𝑅 is structurally constrained 

to represent the working or within-panel correlation. Here it is shown that the focus of the 

generalized estimating equation is on the marginal distribution and the estimator which 

sums the panel-level contribution to the estimating equations after accounting for the 

within-panel correlation.   Thus, the estimating equation for the regression parameters 𝛽 

are formed for the average (sum) of the panels.  

4.3 WORKING CORRELATION STRUCTURE 

The researcher or analyst is charged with making the correct structural choice of the 

working correlation matrix for models estimated using generalized estimating equations. 

There are several correlation structure choices available in software. The most commonly 

used correlation structures are the independent, exchangeable, autoregressive(1), and 

unstructured. These structures are illustrated in Table 4.1. 

 Consider independent observations from 𝑛 individuals. For each individual 𝑖, a 

response 𝑦𝑖𝑡 and a 𝑝 × 1 covariate vector 𝑥𝑖𝑡 = (𝑥𝑖𝑡1, 𝑥𝑖𝑡2, … , 𝑥𝑖𝑡𝑝)𝑇 are gathered at 

times 𝑡 = 1, 2, … , 𝑚𝑖. Let 𝑌𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑚𝑖
)𝑇 be the 𝑚𝑖 ×  1 vector of responses for 

the 𝑖𝑡ℎ individual and 𝑋𝑖 = (𝑥𝑖1
𝑇 , 𝑥𝑖2

𝑇 , … , 𝑥𝑖𝑚𝑖

𝑇 )𝑇 be the 𝑚𝑖 ×  𝑝 corresponding covariate 

matrix. The working correlation structure is chosen for the full model prior to the model 

selection of the number of covariates. 

4.4 QUASI-LIKELIHOOD 

The quasi-likelihood is constructed for the mean parameter 𝜇 = 𝐸(𝑦) and the dispersion 

parameter 𝜙 where 𝑦 is the scalar response variable rather than by specifying a 
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probability distribution. McCullagh and Nelder (1989) give the log quasi-likelihood 

based on the model specification  𝐸(𝑦) = 𝜇 and 𝑣𝑎𝑟(𝑦) = 𝜙𝑣(𝜇) as 

𝑄(𝜇, 𝜙; 𝑦) = ∫
𝑦 − 𝑡

𝜙𝑣(𝑡)
𝑑𝑡

𝜇

𝑦

 

The quasi-likelihood can be written as a function of the regression coefficients 𝛽, for 

example 𝑄(𝛽, 𝜙; (𝑦, 𝑥)) = 𝑄(𝑔−1(𝑥𝛽), 𝜙; 𝑦). If it is assumed that the working 

independence model 𝑅 = 𝐼 is selected, then the paired observations (𝑌𝑖𝑗, 𝑋𝑖𝑗) in the data 

𝐷 are independent. Then the quasi-likelihood based on 𝐷 is 

𝑄(𝛽, 𝜙; 𝐼, 𝐷) = ∑ ∑ 𝑄 (𝛽, 𝜙; (𝑌𝑖𝑗, 𝑋𝑖𝑗)) .

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 

Then the quasi-deviance can be defined as 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 2 ∫
𝑦 − 𝜇

𝑣(𝜇)
𝑑𝜇

𝑦

�̂�

. 

The quasi-likelihood can also be written in terms of the quasi-deviance as 

𝑄(𝑀) = ∑ ∑ 𝑄 (𝛽, 𝜙; (𝑌𝑖𝑗 , 𝑋𝑖𝑗)) = −
𝐷𝑒𝑣(𝑀)

2

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 

where 𝐷𝑒𝑣(𝑀) = 2 ∫
𝑦−𝜇

𝑣(𝜇)
𝑑𝜇

𝑦

�̂�
. 
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Table 4.1 Working Correlation Structures 

Working correlation structure Example 

3 x 3 matrix 

Independent:      𝐶𝑜𝑟𝑟(𝑦𝑖𝑗 , 𝑦𝑖𝑘) = {
1      𝑗 = 𝑘
0      𝑗 ≠ 𝑘

 [
1 0 0
0 1 0
0 0 1

] 

Exchangeable:    𝐶𝑜𝑟𝑟(𝑦𝑖𝑗, 𝑦𝑖𝑘) = {
1      𝑗 = 𝑘
𝛼      𝑗 ≠ 𝑘

 [
1 𝛼 𝛼
𝛼 1 𝛼
𝛼 𝛼 1

] 

AR-1:                    𝐶𝑜𝑟𝑟(𝑦𝑖𝑗 , 𝑦𝑖𝑘) = 𝛼|𝑗−𝑘|  [
1 𝛼 𝛼2

𝛼 1 𝛼
𝛼2 𝛼 1

] 

Unstructured:     𝐶𝑜𝑟𝑟(𝑦𝑖𝑗 , 𝑦𝑖𝑘) = {
1                                   𝑗 = 𝑘
𝛼𝑚𝑖𝑛(𝑗,𝑘),max (𝑗,𝑘)      𝑗 ≠ 𝑘  [

1 𝛼12 𝛼13

𝛼12 1 𝛼23

𝛼13 𝛼23 1
] 
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CHAPTER 5 

R2 
AND PSEUDO-R2

 FOR GENERALIZED ESTIMATING EQUATIONS 

This chapter introduces the R2 and pseudo-R2 statistics currently available for generalized 

linear models. The likelihood is replaced with the quasi-likelihood and a post estimation 

command for Stata is introduced. 

5.1 INTRODUCTION 

For generalized linear models, there are many model measures (diagnostic criteria) that 

are not available for generalized estimating equation models. One of these measures is 

the coefficient of determination 𝑅2. Natarajan, et.al [2007] proposed a measure of partial 

association for GEE and a coefficient of determination to measure the strength of 

association between the outcome variable and the fitted values based on the estimated 

coefficients. The psuedo-R2 statistics to be explored are Efron’s psuedo-R2 (for 

continuous and binary outcomes) [1978], McFadden’s likelihood ratio index (for any 

outcome) [1974], Ben-Akiva and Lerman’s adjusted likelihood ratio index (for any 

outcome) [1985], Cox and Snell [1968] and Maddala [1983] combined transformation of 

likelihood ratio (for any outcome), and Cragg and Uhler’s normed measure (for any 

outcome) [1970]. Where the likelihood is used for a calculation, GEE’s quasi-likelihood 

calculation will be inserted. 

5.2 CURRENT AVAILABILITY OF R2
 IN GENERALIZED LINEAR MODELS  

The most commonly used R2 is the one that involves the calculation of residual sum of 

squares (RSS) and total sum of squares (TSS). This R2 can be interpreted as the percent 
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variance explained and is written as 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

. 

It can also be interpreted as the squared correlation and the ratio of variances.   The 

numerator is in terms of the differences of the observed and fitted values, while the 

denominator is in terms of the differences of the observed and mean values. 

 The above measure is used for linear regression. When these types of statistics are 

applied to generalized linear models, they are called pseudo-𝑅2 statistics. Other measures 

are available for models other than linear regression. The ones discussed herein are 

Efron’s pseudo-𝑅2, McFadden’s likelihood ratio index, Ben-Akiva and Lerman adjusted 

likelihood ratio index, Cragg and Uhler normed measure, and the Cox-Snell or 

transformation of likelihood ratio. 

  Efron [1978] defines a measure as an extension to the regression model’s 

“percent variance explained” interpretation and is given by 

𝑅𝐸𝑓𝑓𝑟𝑜𝑛
2 = 1 −

∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

where �̂� is the model predicted probabilities. This measure was originally directed at 

binary outcome models, but can also be used for continuous models by replacing the �̂�𝑖 

with �̂�𝑖. 

 McFadden [1974] defines a measure, sometimes called the likelihood-ratio index, 

as another extension to the “percent variance explained interpretation” given by  

𝑅McFadden
2 = 1 −

ℒ(𝑀𝛽)

ℒ(𝑀𝛼)
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where ℒ is the log-likelihood,  𝑀𝛼 is the model with only an intercept, and 𝑀𝛽 is the 

model with intercept and covariates.  

 Ben-Akiva and Lerman [1985] extended McFadden’s pseudo-𝑅2 to include an 

adjustment for the number of parameters in the model. This adjustment is similar to the 

adjusted 𝑅2 in linear regression and is given by the formula 

𝑅Ben−Akiva&Lerman
2 = 1 −

ℒ(𝑀𝛽) − 𝑝

ℒ(𝑀𝛼)
 

where 𝑝 is the number of parameters in the model. The intention behind the adjustment is 

to decrease the likelihood so that non-significant variables included in the model do not 

cause a significant increase in the criterion measure.  

 By combining the work of Cox and Snell [1968] and Maddala [1983], a maximum 

likelihood pseudo-𝑅2 is described in the formula 

𝑅ML
2 = 1 − {

𝐿(𝑀𝛼)

𝐿(𝑀𝛽)
}

2
𝑛

= 1 − exp (−
𝐺2

𝑛
) 

where 𝐺2 = −2 ln {
𝐿(𝑀𝛼)

𝐿(𝑀𝛽)
}.  This measure is an extension to the transformation of the 

likelihood ratio. 

 The last measure examined here is the Cragg and Uhler [1970] normed measure. 

Cragg and Uhler introduced a transformation of the likelihood ratio pseudo-𝑅2 because 

the  𝑅ML
2  does not approach 1 as the fit of the two comparison models converge. The 

normed version of the 𝑅ML
2  is given by 

𝑅Cragg&Uhler
2 =

𝑅ML
2

max𝑅ML
2 =

1 − {
𝐿(𝑀𝛼)

𝐿(𝑀𝛽)
}

2
𝑛

1 − 𝐿(𝑀𝛼)2/𝑛
. 
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 These pseudo-𝑅2 measures are available in a user-written Stata command named 

fitstat. The command fitstat is a post estimation command that calculates the 

McFadden, Ben-Akiva and Lerman (adjusted McFadden), Cox-Snell, Cragg-Uhler, and 

Efron pseudo-𝑅2 measures after computing the clogit, cloglog, intreg, 

logisitic, logit, mlogit, nbreg, ocratio, ologit, oprobit, poisson, 

probit, regress, tnbreg, tpoisson, zinb, zip, or ztb regression models. The 

fitstat command was developed by Long and Freese [2014].  

5.3 GENERALIZED LINEAR MODEL R2
 EXTENSION TO GENERALIZED ESTIMATING 

EQUATIONS 

Natarajan, et.al [2007] proposed a measure of partial association for GEE and a 

coefficient of determination to measure the strength of association between the outcome 

variable and all of the coefficients. Using ordinary least squares (OLS) to estimate the 

regression parameters allows the estimate of the partial correlation coefficient to be a 

monotone function of the Z-statistic that is used to test whether a single regression 

coefficient is equal to zero. Natarajan, et. al. propose to use the transformation of the 

GEE Z-statistic as a measure of partial association. Following this same thought, they 

propose to use a function of the Wald statistic that tests whether all parameters (except 

the intercept) are equal to zero to generate the coefficient of determination. 

 For clustered data, each individual 𝑖(𝑖 = 1, … , 𝑁) has an 𝑛𝑖x1 response vector 

𝑌𝑖 = [𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
]𝑇 and a Kx1 covariate vector 𝑥𝑖𝑗 = [𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝐾]𝑇. To calculate 𝛽 

estimates through a GEE approach, the equation below is solved iteratively. 

𝑆(𝛽; 𝑅, 𝐷) ≡ ∑ 𝐷𝑖
′𝑉𝑖

−1(𝑌𝑖 − 𝜇𝑖) = 0

𝑛

𝑖=1

, 
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where 𝐷𝑖 = 𝐷𝑖(𝛽) =
𝜕𝜇𝑖(𝛽)

𝜕𝛽′  and 𝑉𝑖 is a working covariance matrix of 𝑌𝑖. The working 

correlation matrix 𝑅 = 𝑅(𝛼) can be expressed in terms of 𝑉𝑖 = 𝐴𝑖
1/2

𝑅(𝛼)𝐴𝑖
1/2

, where 𝐴𝑖 

is a diagonal matrix with elements 𝑣𝑎𝑟(𝑌𝑖𝑗) = 𝜙𝑣(𝜇𝑖𝑗), which is specified as a function 

of the mean 𝜇𝑖𝑗 = 𝐸(𝑌𝑖𝑗|𝑥𝑖𝑗) = 𝑔(𝑥𝑖𝑗
′ 𝛽). The parameter 𝛼 represents a vector of some 

unknown parameters involved in estimating the working correlation structure.  

 The GEE Wald Z-statistic to test 𝐻0: 𝛽𝐾 = 0 is calculated using the estimate of 

the �̂�𝐾 and dividing it by the model-based standard error estimate of �̂�𝐾; √𝑉𝑎�̂�(�̂�𝐾) . 

Since the Wald statistic has been shown to have poor properties as |�̂�𝐾| gets large, they 

propose to use the Wald statistic with the variance of �̂�𝐾 estimated under the null 

𝐻0: 𝛽𝐾 = 0 by replacing 𝑉𝑎�̂�(�̂�𝐾) with the GEE robust variance estimate 𝑉𝑎�̃�(�̂�𝐾). This 

gives a measure of partial association which under the null is approximately chi-square 

with 1 degree of freedom. 

𝑍�̃� =
�̂�𝐾

√ 𝑉𝑎�̃�(�̂�𝐾)

 

         We then can define the measure of partial association between 𝑌𝑖𝑗 and 𝑥𝑖𝑗𝐾 to be 

𝜌�̃� =
�̃�𝐾/√𝑁

√1 + �̃�𝐾
2/𝑁

 

which ranges from -1 to 1. 

 For the GEE model, 𝐸(𝑌𝑖𝑗|𝑥𝑖𝑗) = 𝑔(𝑥𝑖𝑗
′ 𝛽𝐾), the Wald test to test 𝐻0: 𝛽1 = ⋯ =

 𝛽𝐾 = 0 can be used to form an 𝑅2 statistic. Following the above derivation of the 

measure of partial association, it is proposed that the coefficient of determination be 

written as 
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𝑅2̃ =
�̃�/𝑁

1 + �̃�/𝑁
 

where  

�̃� = [𝐶�̂�]
′
[𝐶 𝑉𝑎�̃�(�̂�𝐾)𝐶′]

−1
[𝐶�̂�], 

is the Wald statistic with the GEE robust covariance matrix estimated under the null. This 

statistic will range from 0 to 1 but does not guarantee that a model with more covariates 

would have a larger 𝑅2̃. This is shown by Natarajan et al. when an additional covariate 

adds very little information. 

 In order to generalize the pseudo-𝑅2 measures discussed in section 5.3 to 

generalized estimating equations, the maximum likelihood calculations must be replaced 

with the quasi-likelihood calculations. The extended measures for 𝑅McFadden
2  is now 

𝑔𝑅McFadden
2 = 1 −

𝑄(𝑀𝛽)

𝑄(𝑀𝛼)
 

where 𝑄(𝑀𝛼) is the quasi-likelihood for the model with only an intercept and 𝑄(𝑀𝛽) is 

the model with intercept and predictors. The quasi-likelihood can also be written in terms 

of the quasi-deviance as 

𝑄(𝑀) = ∑ ∑ 𝑄 (𝛽, 𝜙; (𝑌𝑖𝑗 , 𝑋𝑖𝑗)) = −
𝐷𝑒𝑣(𝑀)

2

𝑛𝑖

𝑗=1

𝑛

𝑖=1

 

where 𝐷𝑒𝑣(𝑀) = 2 ∫
𝑦−𝜇

𝑣(𝜇)
𝑑𝜇

𝑦

�̂�
. The extended measure for 𝑅Ben−Akiva&Lerman

2  is then 

given by 

𝑔𝑅Ben−Akiva&Lerman
2 = 1 −

𝑄(𝑀𝛽) − 𝑝

𝑄(𝑀𝛼)
. 

Similar replacements are made for 𝑅ML
2  and 𝑅Cragg&Uhler

2  so that the formulas are 
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𝑔𝑅ML
2 = 1 − {

𝑄(𝑀𝛼)

𝑄(𝑀𝛽)
}

2
𝑛

 

and  

𝑔𝑅Cragg&Uhler
2 =

𝑔𝑅ML
2

max𝑔𝑅ML
2 =

1 − {
𝑄(𝑀𝛼)

𝑄(𝑀𝛽)
}

2
𝑛

1 − 𝑄(𝑀𝛼)2/𝑛
. 

In Efron’s pseudo-𝑅2, we replace the single summand for observations with a double 

summand to account for the panel observations and within a panel. The generalized Efron 

pseudo-𝑅2 can be written as 

𝑔𝑅Efron
2 =

∑ ∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)
2𝑛𝑖

𝑗=1
𝑛
𝑖=1

∑ ∑ (𝑦𝑖𝑗 − �̅�)
2𝑛𝑖

𝑗=1
𝑛
𝑖=1

 

 These calculations were made available in Stata in a user-written, post-estimation 

command named estatg. This command is available after any GEE model is estimated 

in Stata. The post-estimation command works for any link and variance function. 

 5.4 REAL DATA ANALYSIS 

To test the extensions of the pseudo-𝑅2 measures in GEE models, one can compare the 

quasi-likelihood pseudo-𝑅2 measures to the likelihood based pseudo- pseudo-𝑅2 

measures with a sample dataset. We used a dataset on low birthweight from Homer and 

Lemeshow (2013) in Stata. There are a total of 189 observations in this dataset. This 

dataset includes an identification code for each mother, an indicator variable of low birth 

weight (low), the age of the mother (age), the categorical variable race (race), an 

indicator variable of whether or not the mother smoked during pregnancy (smoke), the 

mother’s pre-pregnancy weight (lwt), an indicator variable of whether or not the mother 

had a history of premature labor (ptl), a history of hypertension (ht), or at the time of 
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birth had uterine irritability (ui). We run a logistic model (link function as binomial and 

variance function as independent) on age, lwt, race, smoke, ptl, ht, and ui on 

low. The xtgee model fit is shown in Table 5.1 where it is shown that lwt, race, 

smoke, and ht are significant predictors of low. The output from estatg is given in 

Table 5.2 for the GEE 𝑅2 and the five pseudo-𝑅2. 

We can compare this to the output of fitstat after running a logit model 

and see that the replacement of the maximum likelihood with the quasi-likelihood works 

well in this situation. When fitting the same model under GLM and independent GEE, we 

have the same results. The results of the logit model in Table 5.3 show that lwt, 

race, smoke, and ht are significant predictors of low. The results of fitstat in 

Table 5.4 match the results of estatg found in Table 5.2. Note that the GEE -𝑅2 

measure is not available in the output of fitstat since this measure is specifically 

designed for GEE models. 

5.5 CONCLUSION AND DISCUSSION 

The 𝑅2 measure is a popular goodness of fit statistic that was not made available for GEE 

models. By building on other pseudo-𝑅2 measures and writing them in terms of the 

quasi-likelihood instead of the maximum likelihood, we have made an important statistic 

that will be available in Stata for longitudinal, clustered, or panel data. Researchers can 

now get a measure of the variance explained in a GEE model. The GEE 𝑅2 measure will 

be an important tool in model selection for finding the balance of significant predictors. 
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Table 5.1 Results of xtgee model with binomial link and independent working correlation 
xtset id  

xtgee low age lwt i.race smoke ptl ht ui, family(binomial) 

robust corr(ind)nolog 

 

GEE population-averaged model No. of obs = 189 

Group variable: id Number of groups = 189 

Link: logit Obs per group: min = 1 

Family: binomial avg = 1.0 

Correlation: independent Max = 1 

 Wald chi2(8) = 29.02 

Scale parameter: 1 Prob > chi2 = 0.0003 

  

Pearson chi2(189): 182.02 Deviance = 201.45 

Dispersion (Pearson): .9630865 Dispersion = 1.065862 

  

 (Std. Err. Adjusted for clustering on id) 

low Coef. 

Robust 

Std. Err. z P>|z| [95%Conf. Interval] 

age -0.0271003 0.033843 -0.8 0.423 -0.09343 0.03923 

lwt -0.01515 0.007128 -2.13 0.034 -0.02912 -0.00118 

       

race       

2 1.262647 0.507421 2.49 0.013 0.26812 2.257175 

3 0.862079 0.4335 1.99 0.047 0.012435 1.711724 

       

smoke 0.923345 0.386719 2.39 0.017 0.165389 1.6813 

ptl 0.541837 0.411416 1.32 0.188 -0.26452 1.348197 

ht 1.832518 0.656366 2.79 0.005 0.546064 3.118971 

ui 0.758514 0.488396 1.55 0.12 -0.19873 1.715752 

_cons 0.461224 1.222866 0.38 0.706 -1.93555 2.857997 
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Table 5.2 Results of estatg 

Pseudo-R2 measures for GEE models 

GEE Efron McFadden Ben-Akiva 

Lerman 

Cox  

Snell 

Cragg 

Uhler 

0.1331 0.1642 0.1416 0.0649 0.1612 0.2267 

Table 5.3 Results of logit model  
logit low age lwt i.race smoke ptl ht ui nolog 

 

Logistic regression Number of obs = 189 

 LR chi2(8) = 33.22 

 Prob > chi2 = 0.0001 

Log likelihood = -100.724 Pseudo R2 = 0.1416 

  

low Coef. Std. Err. z P>|z| [95%Conf. Interval] 

age -0.0271 0.03645 -0.74 0.457 -0.09854 0.044341 

lwt -0.01515 0.006926 -2.19 0.029 -0.02873 -0.00158 

       

race       

2 1.262647 0.52641 2.4 0.016 0.230902 2.294392 

3 0.862079 0.439153 1.96 0.05 0.001355 1.722804 

       

smoke 0.923345 0.400827 2.3 0.021 0.137739 1.708951 

ptl 0.541837 0.346249 1.56 0.118 -0.1368 1.220472 

ht 1.832518 0.691629 2.65 0.008 0.476949 3.188086 

ui 0.758514 0.459377 1.65 0.099 -0.14185 1.658875 

_cons 0.461224 1.20459 0.38 0.702 -1.89973 2.822176 
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Table 5.4 Results of fitstat 

 logit 

Log-likelihood  

Model  -100.724 

Intercept -117.336 

Chi-square  

Deviance 201.448 

LR 33.224 

p-value 0 

R2  

McFadden 0.142 

McFadden (adjusted) 0.065 

McKelvey & Zavoina 0.246 

Cox-Snell/ML 0.161 

Cragg-Uhler/Nagelkerke 0.227 

Efron 0.164 

Tjur’s D 0.167 

Count 0.735 

Count (adjusted) 0.153 

IC  

AIC 219.448 

AIC divided by n 1.161 

BIC 248.624 

Variance of  

e 3.29 

y-star 4.363 
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CHAPTER 6 

MODIFIED QUASI-LIKELIHOOD INFORMATION CRITERION 

This chapter introduces the current quasi-likelihood information criterion for selecting the 

working correlation structure for generalized estimating equations. The modified quasi-

likelihood information criterion is proposed and simulation results are shown to evaluate 

the modified QIC. 

6.1 INTRODUCTION 

In generalized linear models, there is a statistic that measures the relative quality of a 

model for a given dataset referred to as the Akaike information criterion (AIC). This 

criterion measure is used to balance finding the best model in terms of maximizing the 

likelihood with model simplification in terms of including only those terms that 

substantially contribute to the model. The AIC gives an estimate of the information lost 

when a given model is compared to the expectation of the true model; it is also a measure 

of separation between these two models. This theory is based on the Kullback-Leibler 

(1951) information divergence which is a non-symmetric measure of the difference 

between two probability distributions. The Kullback-Leibler information between a 

candidate model and the true model is written as 

Δ0(𝛽, 𝛽∗) = 𝐸𝑀∗
[−2ℒ(𝛽; 𝐷)] 

where ℒ is the log-likelihood and the expectation 𝐸𝑀∗
 is taken with respect to the true 

distribution of 𝐷.  
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The AIC is defined as a function of the log likelihood along with a penalty term 

based on the number of parameters in the model. It is an unbiased estimator of  

𝐸𝑀∗
[−2ℒ(𝛽; 𝐷)] where �̂� is the maximum likelihood estimator under any candidate 

model and the expectation is taken over the random �̂�. The goal is to find the model with 

the lowest loss of information which implies that the lowest AIC is preferred. The AIC 

should only be used to compare GLMs of the same link and variance function. The AIC 

measure is written as  

𝐴𝐼𝐶 =  −2ℒ(𝜃, 𝜙; 𝑦1, 𝑦2, … 𝑦𝑛) + 2𝑝 

where 𝑝 is the number of parameters estimated in the model. This criterion measure is 

extremely useful in model selection for GLMs, but cannot be used for GEEs due to the 

fact that GEEs are non-likelihood based.  

6.2 CURRENT QUASI-LIKELIHOOD INFORMATION CRITERION 

Pan (2001) developed the quasi-likelihood information criterion (QIC) based on the AIC. 

He proposed replacing the likelihood by the quasi-likelihood under the working 

independence model to define a new measure similar to Kullback-Leibler (1951) as 

Δ0(𝛽, 𝛽∗, 𝐼) = 𝐸𝑀∗
[−2𝑄(𝛽; 𝐼, 𝐷)]. 

Here it is assumed that any quasi-likelihood model can be indexed by the parameter 

vector 𝛽, and that 𝛽∗ is the corresponding parameter for the quasi-likelihood model 

introduced by the true data-generating model 𝑀∗.   

 Pan assumes that the GEE estimator �̂� = �̂�(𝑅) is obtained using any general 

working correlation structure 𝑅.  Then 𝐸𝑀∗
[Δ0(𝛽, 𝛽∗, 𝐼)] can then be approximated as 

𝐸𝑀∗
[Δ0(𝛽, 𝛽∗, 𝐼)] ≈ −2𝐸𝑀∗

[𝑄(�̂�; 𝐼, 𝐷)] + 2𝐸𝑀∗
[(�̂� − 𝛽∗)

′
𝑆(�̂�; 𝐼, 𝐷)] + 2 trace(Ω𝐼 , 𝐽), 
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where 𝐽 = 𝑐𝑜𝑣(�̂�), which can be consistently estimated by the sandwich or robust 

covariance estimator, �̂�𝑟 and Ω𝐼 can also be consistently estimated by its empirical 

estimator Ω̂𝐼 = −
𝜕2𝑄(𝛽;𝐼,𝐷)

𝜕𝛽𝜕𝛽′ |𝛽=�̂� = ∑ (𝐷𝑖𝐴𝑖
−1𝐷𝑖)−1𝐷𝑖𝑉𝑖

−1𝑣𝑎𝑟(𝑦𝑖)
𝑛
𝑖=1 𝑉𝑖

−1𝐷𝑖(𝐷𝑖𝐴𝑖
−1𝐷𝑖)

−1.  

The estimating equation in the second term is 𝑆(𝛽; 𝑅, 𝐷) ≡ ∑ 𝐷𝑖
′𝑉𝑖

−1(𝑌𝑖 − 𝜇𝑖) = 0𝑛
𝑖=1 , 

where 𝐷𝑖 = 𝐷𝑖(𝛽) =
𝜕𝜇𝑖(𝛽)

𝜕𝛽′  and 𝑉𝑖 is a working covariance matrix of 𝑌𝑖. The working 

covariance matrix of 𝑌𝑖 can be expressed as 𝑅 = 𝑅(𝛼), 𝑉𝑖 = 𝐴
𝑖

1

2𝑅(𝛼)𝐴
𝑖

1

2, where 𝐴𝑖 is a 

diagonal matrix with elements 𝑣𝑎𝑟(𝑌𝑖𝑗) = 𝜙𝑣(𝜇𝑖𝑗), which is a specified function of the 

mean. Pan ignores the second term which is difficult to estimate, and proposes the 

estimator 

𝑄𝐼𝐶(𝑅) ≡ −2𝑄(𝛽(𝑅); 𝐼, 𝐷) + 2 trace(Ω̂𝐼 , �̂�𝑟). 

The 𝑄𝐼𝐶(𝑅) measure is Pan’s proposed quasi-likelihood under the independence model 

criterion for GEE.  

 Pan notes that ignoring the second term does somewhat influence the performance 

of 𝑄𝐼𝐶(𝑅), but not dramatically. In his simulations, he shows that the AIC is more 

efficient than the QIC for possibly two reasons. The first reason is that the maximum 

likelihood estimator of 𝛽 is more efficient than the GEE estimator, and the second reason 

is that the information of the true correlation structure is within the likelihood function in 

the AIC, but it is not embedded in the quasi-likelihood in the QIC. In Pan’s simulation, 

he only examines the independent, exchangeable, and AR(1) working correlation 

matrices and does not include the unstructured matrix as a choice. He found that the QIC 

favored the correct correlation structure 67.8% to 72.1% when the sample size was 50 

and 100 respectively. 
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 Other researchers have examined the performance of Pan’s QIC. Barnett et. al. 

[2010] noted that the overall success of the QIC was 29.4% and favored the simpler 

covariance structure in when examining ecological data. Hin, Carey, and Wang [2007] 

showed that QIC had a detection rate of 60-70% for most of the simulated scenarios 

using clustered data. When the incorrect structure is favored such as the independence 

structure, Fitzmaurice [1995] notes that assuming independence can lead to a 

considerable loss of efficiency in estimating the regression parameters.   

6.3 MODIFIED QUASI-LIKELIHOOD INFORMATION CRITERION 

Since the current information criterion is not as efficient as it could be, a modified QIC is 

proposed. This modified QIC is built on the current QIC as it still uses the calculated 

quasi-likelihood measure and takes into account the number of parameters in the model. 

However, this modified QIC also takes into account the number of correlation 

coefficients estimated in the model, denoted as 𝑚. The modified QIC can be written as 

𝑚𝑄𝐼𝐶 = −2𝑄(�̂�(𝑅); 𝐼, 𝐷) + 2trace(Ω̂𝐼 , �̂�𝑟) ∗ 2𝑝 − 𝑚(trace(Ω̂𝐼 , �̂�𝐼), 

where �̂�𝐼 = ∑
1

𝑛
(𝐷𝑖𝐴𝑖

−1𝐷𝑖)
𝑛
𝑖=1 .   The modified QIC provides a balance between the 

independent structure that has no correlation estimates and the unstructured covariance 

matrix that estimates the most correlation parameters.  

 The modified QIC favors the unstructured covariance matrix as in the modified 

QIC under the unstructured working correlation matrix always calculates the smallest 

value for the modified QIC. The modified QIC’s third term is zero when the independent 

working correlation matrix, and the modified QIC reduces to 𝑚𝑄𝐼𝐶(𝐼) =

−2𝑄(�̂�(𝑅); 𝐼, 𝐷) + 2trace(Ω̂𝐼 , �̂�𝑟) ∗ 2𝑝.  
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6.4 SIMULATION STUDIES 

Simulations were used to demonstrate and asses the performance of the proposed 

modified QIC. In total, 44 different combinations of correct covariance structure, number 

of measurements on each subject, and correlation value 𝜌 were examined. The 

independent, exchangeable, autoregressive(1), and unstructured covariance matrices were 

examined. Possible number of measurements 𝑡 were 3, 5, 7, and 9. The possible values of 

𝜌 ranged from slightly correlated to heavily correlated: 0.1, 0.3, 0.5, 0.7, and 0.9.   

The first step in the simulation was to generate panel data with the specified 

covariance structure. The model chosen for simulation was the same as in Pan [2001] and 

Fitzmaurice [1995]. The response variable 𝑌𝑖𝑡 is a binary outcome and its marginal mean 

is 𝜇𝑖𝑡, with 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖𝑡) = 𝛽0 + 𝛽1𝑥1,𝑖𝑡 + 𝛽2(𝑡 − 1) 

where the 𝑥1,𝑖𝑡 are identically and independently distributed Bernoulli (𝑥1,𝑖𝑡 = 0 or 

𝑥1,𝑖𝑡 = 1 with probability ½) and 𝛽0 = 0.25 = −𝛽1 = −𝛽2 and where 𝑡 =  1, 2, 3 and 

𝑖 =  1, … , 𝑛. The 𝑌𝑖 joint distribution was simulated from Bahadur’s [1961] 

representation from Fitzmaurice [1995]. A sample size of 1000 was generated under a 

specified working covariance structure. The models were fit using Stata’s xtgee 

command, and then the AIC, Pan’s QIC, and the modified QIC were calculated and 

recorded into a separate dataset. Each simulation run was ranked and the chosen 

correlation structure with smallest QIC was recorded. Tables showing the percentage of 

the working correlation matrix selected by Pan’s QIC versus the modified QIC for the 

marginal logistic model from 1000 independent replications for each structure is shown 
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below. Since Pan’s original simulation did not include the unstructured covariance matrix 

as a choice, the choices of covariance structure are independent, exchangeable, or 

autoregressive(1). 

Table 6.1 shows that Pan’s QIC favors the correct correlation structure less than 

50% of the time under all combinations of 𝑡 and 𝜌. When the number of measurements 

on a single person gets large, Pan’s QIC has a more difficult time selecting the correct 

correlation structure. The same is true when the measurements within an individual 

become more correlated. When comparing Pan’s QIC to the modified QIC percentages 

from Table 6.2, it is clear that the modified QIC outperforms Pan’s QIC in selection of 

the correct covariance structure. When the number of measurements on a single person 

gets large, the modified QIC still performs well. The same is true when the measurements 

within an individual become more correlated. 

Table 6.3 shows that Pan’s QIC favors the correct correlation structure less than 50% of 

the time under all combinations of 𝑡 and 𝜌. When the number of measurements on a 

single person gets large, Pan’s QIC has a more difficult time selecting the correct 

correlation structure. The same is true when the measurements within an individual 

become more correlated. When comparing Pan’s QIC to the modified QIC percentages 

from Table 6.4, it is clear that the modified QIC outperforms Pan’s QIC in selection of 

the correct covariance structure. When the number of measurements on a single person 

gets large, the modified QIC still performs well. The same is true when the measurements 

within an individual become more correlated. 

When the true correlation structure is independent, Pan’s QIC performs better 

than the modified QIC. Table 6.5 shows that the modified QIC always chooses 
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unstructured first and independent last. Pan’s QIC only chooses the independent working 

correlation structure less than 32% of the time. 

6.5 CONCLUSION AND DISCUSSION 

Under all combinations of the simulation, the modified QIC outperforms the currently 

available Pan’s QIC. The best percentage that Pan’s QIC achieves is 54% while the best 

percentage the modified QIC achieves is 99.2%. Pan’s simulation did not include the 

unstructured covariance matrix as a choice. In our simulation, when including the 

unstructured covariance structure as a choice, the modified QIC favors the unstructured 

matrix all the time while Pan’s QIC continues to favor the more simplified independent 

structure. It is important to use the correct correlation structure in modeling because the 

correct correlation structure improves estimation efficiency. 
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Table 6.1: Proportion of time Pan’s QIC identifies correct correlation 

structure when the true correlation structure is exchangeable 

𝑡 𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9 

3 48.0% 31.4% 11.8% 4.9% 1.7% 

5 42.9% 13.4% 2.5% 0.5% 0.0% 

7 33.1% 5.6% 0.8% 0.1% 0.0% 

9 26.6% 2.5% 0.4% 0.0% 0.0% 

 

Table 6.2: Proportion of time modified QIC identifies correct correlation  

structure when the true correlation structure is exchangeable 

𝑡 𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9 

3 92.0% 99.2% 96.2% 91.4% 78.1% 

5 98.4% 96.1% 92.0% 83.8% 63.6% 

7 99.2% 91.0% 80.1% 67.1% 37.7% 

9 98.8% 82.0% 66.3% 46.6% 20.6% 

 

Table 6.3: Proportion of time Pan’s QIC identifies correct correlation  

structure when the true correlation structure is AR(1) 

𝑡 𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9 

3 54.3% 33.0% 12.0% 4.1% 1.4% 

5 54.3% 20.1% 4.2% 0.3% 0.2% 

7 50.4% 13.5% 1.6% 0.0% 0.0% 

9 47.3% 6.8% 0.5% 0.0% 0.0% 

 

Table 6.4 Proportion of time modified QIC identifies correct correlation  

structure when the true correlation structure is AR(1) 

𝑡 𝜌 = 0.1 𝜌 = 0.3 𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9 

3 89.8% 97.3% 89.6% 69.0% 51.2% 

5 97.3% 98.5% 85.8% 55.5% 37.0% 

7 98.2% 96.9% 71.6% 36.6% 21.1% 

9 98.8% 94.7% 59.2% 20.5% 12.3% 

 

Table 6.5 Comparison when true correlation structure is independent 

 𝑡 = 3 𝑡 = 5 𝑡 = 7 𝑡 = 9 

Pan’s QIC 31.2% 29.1% 26.6% 28.0% 

Modified QIC 0.0% 0.0% 0.0% 0.0% 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 CONCLUSION 

This dissertation has presented three significant contributions to generalized linear 

models and generalized estimating equations. These contributions included a penalized 

maximum likelihood estimation method for generalized linear models, an R2 and several 

pseudo-R2 measures for generalized estimating equations, and a modified quasi-

likelihood information criterion for generalized estimating equations.  

The new estimation method presented within this dissertation helps fix problems 

encountered in real data analysis such as bias, small sample size, and separation of data 

points. The penalized maximum likelihood estimation method is available as a Stata 

command firthglm. The new statistics presented for generalized estimating equation 

models further extend the usefulness and interpretation of these widely used models and 

provide diagnostic and model selection tools not previously available to researchers. The 

R2 and pseuso-R2 calculations are available in a post estimation command, estatg, in 

Stata. 

7.2 FUTURE WORK 

In order to expand this work and make these statistics and methods available to more 

researchers, packages for other statistical software will be developed. The penalized 

maximum likelihood estimation method, R2 and pseuso-R2 calculations, and modified 
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QIC calculations will be made available in SAS, statistical analysis system, and R, a free 

statistical software environment.  

  In generalized estimating equations, there is also another criterion for selecting 

the covariates, or independent variables, to include within the model. This criterion is 

known as the QICu. I will investigate a modified QICu measure and implement it within 

the same software packages. In the future, I will also investigate a similar modification to 

the Bayesian information criterion (BIC) and evaluate its efficiency compared to the 

Akaike information criterion, Quasi-likelihood information criterion, and the modified 

Quasi-likelihood information criterion.
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APPENDIX A – STATA CODE FOR R2
 AND PSEUDO-R2 

*! version 1.0.0   

program define estatg, rclass 

 syntax  

 

 quietly { 

  if "`e(cmd)'" != "xtgee" { 

   noi di as err "this command must follow -xtgee-" 

   exit 199 

  } 

 

 

  local y "`e(depvar)'" 

 

  tempname b Vr C Q 

  local N     = e(N)   // Number of observations 

  local Ng    = e(Ng)   // Number of groups 

  matrix `b'  = e(b)   // Estimated coefficient vector 

  matrix `Vr' = e(V)   // Variance estimate   

 

  FixMat `b' `Vr' 

  local p = colsof(`Vr')-1 

 

  if `p' == 0 { 

   matrix `C'  = (1)  

  } 

  else { 

   matrix `C'  = I(`p') , J(`p',1,0)  

  } 

  matrix `Q'  = (`C'*`b'')' * syminv(`C'*`Vr'*`C'') * (`C'*`b'') 

  local Qv    = `Q'[1,1] 

  local r2    = (`Qv'/`N') / (1 + (`Qv'/`N')) 

 

  GetM 

  local m "`r(m)'" 

 

  tempname xb mu 

  predict double `xb', xb   // linear predictor 

  predict double `mu'       // default is the mean (scale of outcome)    mu is y-

hat 
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  replace `xb' = . if ! e(sample) 

 

 

  tempvar ef1 ef2 

  gen double `ef1' = (`y'-`mu')^2  // Sum(y - yhat) 

  summ `y' if e(sample), meanonly 

  gen double `ef2' = (`y'-`r(mean)')^2 // Sum(y - ybar) 

  summ `ef1', meanonly 

  local num = r(sum) 

  summ `ef2', meanonly 

  local den = r(sum) 

 

  local efron = 1 - `num'/`den' 

 

  GetVar 

  local var = r(var) 

 

  global SGLM_y "`y'" // Set this global variable so we can use the 

glim_v## commands 

 

  global SGLM_m "`m'" // Set this global variable so we can use the 

glim_v## commands 

 

  global SGLM_s1 = 1 // `e(phi)' 

 

   

  local scale = e(phi) 

  tempvar QR 

  glim_v`var' 3 `xb' `mu' `QR' 

  summ `QR' if e(sample), meanonly 

  local QbetaR = r(sum)/`scale' 

 

  tempvar QI 

 

  preserve  // preserve - we are going to run another model 

  tempname hold 

  estimates store `hold' 

   

capture { 

   local cmd "`e(cmdline)'" 

   local i   = index("`cmd'",",") 

   local ip1 = `i'+1 

   local opt = substr("`cmd'",`ip1',.) 
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if "`e(wtype)'" != "" { 

    local wexp "[`e(wtype)' `e(wexp)']" 

   } 

   xtgee `y' `wexp' if e(sample), `opt' 

 

   tempvar mu2 

   predict `mu2' 

 

   glim_v`var' 3 `xb' `mu2' `QI' 

   summ `QI' if e(sample), meanonly 

   local QbetaI = r(sum) / `e(phi)' 

   

  } 

  estimates restore `hold' 

  restore 

 

  if "`QbetaI'" == "" { 

   local QbetaI = . 

  } 

 

 

  // local QbetaR = 2*abs(`QbetaR') 

  // local QbetaI = 2*abs(`QbetaI') 

 

  local mf    = 1-(`QbetaR'/`QbetaI') 

  local bal   = 1-((`QbetaR'+2*(`p'+1))/(`QbetaI')) 

  local power = 2/`N' 

  local ml    = 1 - exp((`QbetaR'-`QbetaI')/`N') 

  local cu    = `ml'/(1-exp(-`QbetaI'/`N')) 

 

  local rvals "N r2 efron mf bal ml cu" 

  if "`e(family)'" == "Gaussian" { 

   local rvals "N r2 efron" 

  } 

   

noi di   

  noi di "Pseudo-R2 measures for GEE models" 

 

  if "`e(family)'" == "Gaussian" { 

   noi di as txt /// 

    _col(10) "GEE" /// 

    _col(20) "Efron"  

 

   noi di _col(10) _c 

   foreach val in r2 efron { 

    noi di as res %6.4f ``val'' "    " _c 
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   } 

  } 

  else { 

   noi di as txt /// 

    _col(10) "" /// 

    _col(20) "" /// 

    _col(30) "" /// 

    _col(40) "Ben-Akiva" /// 

    _col(50) "Cox" /// 

    _col(60) "Cragg"  

   noi di as txt  /// 

    _col(10) "GEE" /// 

    _col(20) "Efron" /// 

    _col(30) "McFadden" /// 

    _col(40) "Lerman" /// 

    _col(50) "Snell" /// 

    _col(60) "Uhler"  

 

   noi di _col(10) _c 

   foreach val in r2 efron mf bal ml cu { 

    noi di as res %6.4f ``val'' "    " _c 

   } 

  } 

  noi di  

 

  foreach val in `rvals' { 

   ret scalar `val' = ``val'' 

  } 

   

ret scalar QbetaI = `QbetaI' 

  ret scalar QbetaR = `QbetaR' 

 } 

end 
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capture program drop GetVar 

program define GetVar, rclass 

        quietly { 

                local f = substr(lower("`e(family)'"),1,3) // Grab first 3 letters of e(family) 

 

                local v = .   // Map each family to its glim_v# command 

                if "`f'" == "bin" { 

                        local v = 2 

                } 

                else if "`f'" == "gau" { 

                        local v = 1 

                } 

                else if "`f'" == "gam" { 

                        local v = 4 

                } 

                else if "`f'" == "poi" { 

                        local v = 3 

                } 

                else if "`f'" == "inv" { 

                        local v = 5 

                } 

                else if "`f'" == "neg" { 

                        local v = 6 

                } 

                ret scalar var = `v' 

        } 

end 

 

capture program drop GetM 

program define GetM, rclass 

        quietly { 

                local cmd = lower("`e(cmdline)'") 

                local i   = index("`cmd'","family(binomial") 

  local j   = `i'+15 

                local cmd = substr("`cmd'",`j',.) 

                local i   = index("`cmd'",")") 

                local i   = `i'-1 

                local m   = substr("`cmd'",1,`i') // Get argument to "family(binomial arg)" 

 

                if "`m'" == "" { 

                        local m "1" 

                } 

                ret local m "`m'" 

        } 

end 
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capture program drop FixMat 

program define FixMat 

 args b v 

 quietly { 

  tempname bc vc 

  mat `bc' = `b' 

  mat `vc' = `v' 

  local ind "" 

  local nn = 0 

  local nc = colsof(`bc') 

  forvalues k=1/`nc' { 

   if `vc'[`k',`k'] != 0 { 

    local ind = "`ind' `k'" 

    local nn = `nn'+1 

   } 

  } 

  mat `b' = J(1,`nn',0) 

  mat `v' = J(`nn',`nn',0) 

  local k 1 

  foreach j in `ind' { 

   mat `b'[1,`k'] = `bc'[1,`j'] 

   local h 1 

   foreach i in `ind' { 

    mat `v'[`k',`h'] = `vc'[`j',`i'] 

    mat `v'[`h',`k'] = `vc'[`i',`j'] 

    local h = `h'+1 

   } 

   local k = `k'+1 

  } 

 } 

end 
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program drop _all 

clear 

 

webuse lbw 

xtset id 

xtgee low age lwt i.race smoke ptl ht ui, family(binomial) robust corr(ind) 

estatg 

ret list 

logit low age lwt i.race smoke ptl ht ui 

fitstat 

exit 

xtgee bwt age lwt i.race smoke ptl ht ui, fam(gauss) robust corr(ind) 

estatg 

ret list 

exit 
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APPENDIX B – STATA CODE FOR MODIFIED QIC SIMULATION
 

capture program drop MySim 

program define MySim, rclass 

 args n t rho 

 drop _all 

 MakePanelData `n' `t', gee(exch `rho') logistic clear  

 tempvar eta 

 gen double `eta' = 0 

  

 local nglim = 1 

 

 global SGLM_m "1" 

 local fam "bin" 

 local lnk "logit" 

 local nglim = 2 

 

 

 // Model A 

 xtgee y a b, i(id) t(t) fam(`fam') link(`lnk') corr(ind)  

 tempname betaI SigmaI muI 

 matrix `betaI'   = e(b)    // A(1) from notes 

 matrix `SigmaI'  = e(V)    // A(2) from notes 

 predict double `muI', mu   // A(3) from notes 

 

 tempname traceR traceI 

  

 foreach corr in ind exch ar1 unst { 

 

  // Model B 

  qui xtgee y a b, i(id) t(t) fam(`fam') link(`lnk') corr(`corr') robust  

  tempname betaR VR muR 

  matrix `betaR' = e(b)     // B(1) from notes 

  matrix `VR'    = e(V)     // B(2) from notes 

  predict double `muR', mu  // B(3) from notes 

         local p = rowsof(`VR')    // B(4) from notes 

  local scale = e(phi)      // B(5) from notes 

  local rank = e(rank)
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  // Model c 

  qui capture noi glm y a b, fam(`fam') link(`lnk') from(`betaR') iter(0)  

 

  tempname SigmaR 

  matrix `SigmaR' = e(V)    // C(1) from notes 

 

 

 /************************************************************ 

    Need to define global macro SGLM_m so I can use -glm-  

    helper programs to calculate the quasilikelihood. 

 

    Helper functions work like this: 

  

    glim_v# TODO ETA MU QQ 

    #={1,2,3,4,5} for {gauss, binomial, poisson, gamma, inv gauss} 

    TODO = 3 if you want quasilikelihood defined in variable QQ 

    ETA  = whatever (ignored for TODO=3) 

    MU   = values to use for fitted values in calculation of QQ 

    QQ   = place to store quaslikelihood values 

 

 *************************************************************/ 

 

  if `nglim' == 2 { 

   global SGLM_m "1" 

  } 

  tempvar eta QR QI 

  

  qui gen `eta' = . 

  

  qui glim_v`nglim' 3 `eta' `muR' `QR' 

 

  qui glim_v`nglim' 3 `eta' `muI' `QI' 

 

  qui summ `QR', meanonly 

  local QbetaR = r(sum)/`scale'   // C(2) from notes 

 

  qui summ `QI', meanonly 

  local QbetaI = r(sum)/`scale'   // C(3) from notes 

 

  matrix `traceR' = trace(invsym(`SigmaR')*`VR') 

  matrix `traceI' = trace(invsym(`SigmaI')*`VR') 

   

  local offR = `traceR'[1,1] 

  local offI = `traceI'[1,1] 
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  local ncorr = 0 

  if "`corr'" == "exch" | "`corr'" == "ar1" { 

   local ncorr = 1 

  } 

  else if "`corr'" == "unst" { 

   local ncorr = `t' * (`t'-1) / 2 

  } 

  

  ret scalar AIC`corr'      =  `QbetaR' + 2*`p' + 2*`ncorr' 

  ret scalar PanQIC`corr'   =  `QbetaR' + 2*`offR' 

  ret scalar HHQIC`corr'    =  `QbetaR' + 2*`offI' 

  ret scalar QICu`corr'     =  `QbetaR' + 2*`p' 

  ret scalar traceR`corr'   =  `offR' 

  ret scalar traceI`corr'   =  `offI' 

  ret scalar QbetaR`corr'   =  `QbetaR' 

  ret scalar QbetaI`corr'   =  `QbetaI' 

   

ret scalar scale`corr'    =  `scale' 

   

ret scalar New1`corr'     =  `QbetaR' + `offR' + `offI' 

  ret scalar New2`corr'     =  `QbetaR' + 2*`offR'*2*`p' 

  ret scalar New3`corr'     =  `QbetaR' + 2*`offI'*2*`p' 

  ret scalar New4`corr'     =  `QbetaR' + ((2*(`offR'+1)*(`offR'+2))/(`n'-

`offR'-2)) 

  ret scalar New5`corr'     =  `QbetaR' + ((2*(`offI'+1)*(`offI'+2))/(`n'-`offI'-

2)) 

  ret scalar New6`corr'     =  `QbetaR' + 

(((`offR'+1)*(`offI'+1)*(`offR'+2)*(`offI'+2))/(`n'-(0.5*`offI'+0.5*`offR')-2)) 

  ret scalar New7`corr'     =  `QbetaR' + (`n'/(`n'-`p'-`ncorr'-

2))*(2*(`p'+`ncorr'+2)) 

  ret scalar New8`corr'     =  `QbetaR' + (2*(`m'+1)*(`m'+2))/(`n'-`m'-2) 

  ret scalar New9`corr'   =  `QbetaR' + (2*(`m'+1)*(`m'+2))/(`p'-`m'-2) 

  ret scalar New16`corr'    =  `QbetaR' + 2*`traceR'*2*`p' - `ncor'*`traceI' 

  ret scalar New17`corr'    =  `QbetaR' + 2*`offR'*2*`p' - `ncor'*`offI' 

   

ret scalar p`corr'        = `p' 

  ret scalar t`corr'        = `t' 

  ret scalar ncor`corr'     = `ncorr' 

  ret scalar offR`corr'   = `offR' 

  ret scalar offI`corr'   = `offI' 

  ret scalar ncor`corr'     = `ncorr' 

  ret scalar traceR`corr'   =  `traceR' 

  ret scalar traceI`corr'   =  `traceI' 

  } 

end 
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local types "ar1 exch ind unst" 

local args "" 

foreach corr in `types' { 

  

local args "`args' AIC`corr'     = r(AIC`corr')" 

 local args "`args' PanQIC`corr'  = r(PanQIC`corr')" 

 local args "`args' HHQIC`corr'   = r(HHQIC`corr')" 

 local args "`args' QICu`corr'    = r(QICu`corr')" 

 local args "`args' traceR`corr'  = r(traceR`corr')" 

 local args "`args' traceI`corr'  = r(traceI`corr')" 

 local args "`args' QbetaR`corr'  = r(QbetaR`corr')" 

 local args "`args' QbetaI`corr'  = r(QbetaI`corr')" 

 local args "`args' scale`corr'   = r(scale`corr')" 

  

local args "`args' New1`corr'    = r(New1`corr')" 

 local args "`args' New2`corr'    = r(New2`corr')" 

 local args "`args' New3`corr'    = r(New3`corr')" 

 local args "`args' New4`corr'    = r(New4`corr')" 

 local args "`args' New5`corr'    = r(New5`corr')" 

 local args "`args' New6`corr'    = r(New6`corr')" 

 local args "`args' New7`corr'    = r(New7`corr')" 

 local args "`args' New8`corr'    = r(New8`corr')" 

 local args "`args' New9`corr'    = r(New9`corr')" 

 local args "`args' New16`corr'    = r(New16`corr')" 

 local args "`args' New17`corr'    = r(New17`corr')" 

  

local args "`args' p`corr'       = r(p`corr')" 

 local args "`args' t`corr'       = r(t`corr')" 

 local args "`args' ncor`corr'    = r(ncor`corr')" 

 

} 

 

// exch 0.1 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch01n100t3a, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch01n100t5a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch01n100t7a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch01n100t9a, replace 

 

//exch 0.3 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch03n100t3a, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch03n100t5a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch03n100t7a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch03n100t9a, replace 

 

//exch 0.5 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch05n100t3a, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch05n100t5a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch05n100t7a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch05n100t9a, replace 

 

//exch 0.7 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch07n100t3a, replace 

 

 



www.manaraa.com

 

68 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch07n100t5a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch07n100t7a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch07n100t9a, replace 

 

// exch 0.9 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch09n100t3a, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch09n100t5a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch09n100t7a, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save exch09n100t9a, replace 

 

// ar1 0.1 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar101n1000t3, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar101n1000t5, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar101n1000t7, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar101n1000t9, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 20 .1 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar101n1000t20, replace 
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//ar1 0.3 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar103n1000t3, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar103n1000t5, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar103n1000t7, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar103n1000t9, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 20 .3 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar103n1000t20, replace 

 

//ar1 0.5 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar105n1000t3, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar105n1000t5, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar105n1000t7, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar105n1000t9, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 20 .5 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar105n1000t20, replace 

 

//ar1 0.7 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar107n1000t3, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar107n1000t5, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar107n1000t7, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar107n1000t9, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 20 .7 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar107n1000t20, replace 

 

// ar1 0.9 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar109n1000t3, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar109n1000t5, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar109n1000t7, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar109n1000t9, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 20 .9 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save ar109n1000t20, replace 
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// ind 0.1 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 3 0 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save indn1000t3, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 5 0 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save indn1000t5, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 7 0 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save indn1000t7, replace 

 

set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 9 0 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save indn1000t9, replace 
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set seed 9262014 

set more off 

simulate `args', reps(1000) : MySim 1000 20 0 

gen iteration = _n 

reshape i iteration 

reshape j type ar1 exch ind unst, string 

reshape xij AIC PanQIC HHQIC QICu traceR traceI QbetaR QbetaI scale New1 New2 

New3 New4 New5 New6 New7 New8 New9 New16 New17 p t ncor 

reshape long 

save indn1000t20, replace 

 

exit 
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program define MakePanelData  

 version 11 

 syntax anything(name=numlist) [, GEE(string) REGression GAMma POIsson 

LOGistic PRObit RE(string) CLEAR] 

 quietly { 

  describe 

  if r(N)+r(k)>0 & "`clear'"=="" { 

   noi di as err "You must specify -clear- if there are data in memory" 

   exit 199 

  } 

   

  local n : word 1 of `numlist' 

  local t : word 2 of `numlist' 

   

  capture confirm integer number `n'  

  if _rc { 

   noi di as err "First argument is incorrect: must be a positive 

integer" 

   exit 199 

  } 

  capture confirm integer number `t'  

  if _rc { 

   noi di as err "Second argument is incorrect: must be a positive 

integer" 

   exit 199 

  } 

   

  local nargs : word count `logistic' `poisson' `regression' `probit' `gamma' 

   

  if `nargs' == 0 { 

   local regression "regression" 

  } 

   

  if `nargs' > 1 { 

   noi di as err "You cannot specify more than one of {logistic, 

poisson, regression, probit}" 

   exit 199 

  } 

   

  if `n' < `t' | `t' < 1 | `t' > 100 { 

   noi di as err "You must specify: at least as many groups as 

periods" 

   noi di as err "                  number of periods in [1,99]" 

   exit 199 

  } 

  drop _all 
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  set obs `n' 

     

  if "`gee'" != "" & "`re'" != "" { 

   noi di as err "You cannot specify both gee() and re()" 

   exit 199 

  } 

   

  if "`gee'" == "ind" { 

   local gee "exch 0" 

  } 

   

  if "`gee'" != "" { 

   tempname R 

   local type : word 1 of `gee' 

   local val  : word 2 of `gee' 

    

   if "`type'" == "user" { 

    mat `R' = `val' 

    local typearg "user `val'" 

   } 

   else { 

    if index("exchar1ind","`type'") == 0 { 

     noi di as err "Unknown GEE() type" 

     exit 199 

    } 

    capture confirm num `val' 

    if _rc { 

     noi di as err "Argument for GEE is not a number" 

    } 

    MakeR `R' "`type'" `val' `t' 

    local typearg "`type'" 

   } 

    

   noi CheckR `R' 

   MakeGEE`regression'`gamma'`poisson'`logistic'`probit' `R' 

"`typearg'" 

  } 

  else { 

   MakeRE`regression'`gamma'`poisson'`logistic'`probit' 

  } 

 } 

 describe 

 notes 

end 
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program define CheckR 

 args R 

 capture confirm matrix `R'  

 if _rc { 

  noi di as err "Correlation matrix does not exist" 

  exit 199 

 } 

 local r = rowsof(`R') 

 local c = colsof(`R') 

 if `r' != `c' { 

  noi di as err "Correlation matrix is not square" 

  exit 199 

 } 

 forvalues i=1/`r' { 

  forvalues j=1/`c' { 

   if `i'==`j' { 

    if `R'[`i',`j'] != 1 { 

     noi di as err "Correlation matrix does not have 1 on 

all diagonals" 

     exit 199 

    } 

   } 

   else { 

    if `R'[`i',`j'] < -.9999 | `R'[`i',`j'] > .9999 { 

     noi di as err "Correlation matrix has off diagonal 

elements > 0.9999 in absolute value" 

     exit 199 

    } 

    if `R'[`i',`j'] != `R'[`j',`i'] { 

     noi di as err "Correlation matrix is not symmetric" 

     exit 199 

    } 

   } 

  } 

 } 

end 
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program define MakeR 

 args R typ val t 

  

 if "`typ'" == "exch" { 

  mat `R' = (1-`val')*I(`t') + J(`t',`t',`val') 

 } 

 if "`typ'" == "ar1" { 

  mat `R' = J(`t',`t',0) 

  forvalues row=1/`t' { 

   forvalues col=1/`t' { 

    mat `R'[`row',`col'] = (`val')^(abs(`row'-`col')) 

   } 

  } 

 } 

 if "`typ'" == "ind" { 

  mat `R' = I(`t') 

 } 

end 

 

 

program define MakeBinaryR 

 args R  

 local t = colsof(`R') 

 tempname S 

 matrix `S' = I(`t') 

 

 forvalues i=1/`t' { 

  local p`i' = 0.5  

 } 

 local tm1 = `t'-1 

 forvalues i=1/`tm1' { 

  local ip1 = `i'+1 

  forvalues j=`ip1'/`t' { 

   local rij = `R'[`i',`j'] 

   local pij = `rij'*sqrt(`p`i''*(1-`p`i'')*`p`j''*(1-`p`j'')) + `p`i''*`p`j'' 

   local rho = sin(2*_pi*(`pij'-0.25)) 

   matrix `S'[`i',`j'] = `rho' 

   matrix `S'[`j',`i'] = `rho' 

  } 

 } 

 matrix `R' = `S' 

end 
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program define MakePoissonR 

 args R mu 

 local t = colsof(`R') 

 tempname S 

 matrix `S' = I(`t') 

  

 preserve 

 tempvar n1 n2 p1 p2 p3 sd1 sd2 

  

 local tm1 = `t'-1 

 forvalues i=1/`tm1' { 

  local ip1 = `i'+1 

  replace `sd1' = sqrt(`mu'`i') 

  replace `n1' = rnormal(`mu'`i',`sd1') 

  replace `n3' = rnormal(`mu'`i',`sd1') 

  replace `p1' = invpoisson(`mu'`i',normprob(`mu'`i')) 

  replace `p3' = invpoisson(`mu'`i',1-normprob(`mu'`i')) 

  forvalues j=`ip1'/`t' { 

   replace `sd2' = sqrt(`mu'`j') 

   replace `n2'  = rnormal(`mu'`j',`sd2') 

   replace `n2' =  

   corr  

 gen double `n1' = rnormal(`mu',1 

 

 forvalues i=1/`t' { 

  local p`i' = 0.5  

 } 

 local tm1 = `t'-1 

 forvalues i=1/`tm1' { 

  local ip1 = `i'+1 

  forvalues j=`ip1'/`t' { 

   local rij = `R'[`i',`j'] 

   local pij = `rij'*sqrt(`p`i''*(1-`p`i'')*`p`j''*(1-`p`j'')) + `p`i''*`p`j'' 

   local rho = sin(2*_pi*(`pij'-0.25)) 

   matrix `S'[`i',`j'] = `rho' 

   matrix `S'[`j',`i'] = `rho' 

  } 

 } 

 matrix `R' = `S' 

end 
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program define Finalize 

 quietly { 

  keep y* a* b* 

  gen id  = _n 

  reshape i id 

  reshape j t 

  reshape xij y a b  

  noi di  

  noi corr y* 

  noi di 

  reshape long 

  compress 

  label var a      "binary(p=.5) predictor variable" 

  label var b      "uniform(0,1) predictor variable" 

  label var id     "panel/group identifier number" 

  label var t      "within-group order number" 

  label var y      "outcome variable with specified within-group corr" 

 } 

end 
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program define MakeCorrNorm 

 args R  

 local t = colsof(`R') 

 

 * Create a series of N(0,1) vars  

 forvalues i=1/`t' { 

  gen double a`i' = rnormal(0,1) 

  summ a`i' 

  replace a`i' = (a`i'-r(mean))/r(sd) 

 } 

 * The sample correlation of the a1,...,at variables is not exactly equal to  

 * the specified values, so we create n1,...,nt variables with the desired property. 

 corr `alist', cov 

  

 tempname R1 R2 R1R2 

 matrix `R1' = cholesky(syminv(r(C))) 

 matrix `R2' = cholesky(`R') 

 matrix `R1R2' = `R1'*`R2'' 

 

 forvalues i=1/`t' { 

  gen double n`i' = 0 

  forvalues j=1/`t' { 

   replace n`i' = n`i' + `R1R2'[`j',`i']*a`j' 

  } 

 } 

 forvalues i=1/`t' { 

  drop a`i' 

 } 

end 
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program define MakeGEEregression 

 

 args R type 

 local t = colsof(`R') 

 

 MakeCorrNorm `R'  

 forvalues i=1/`t' { 

  gen double a`i' = uniform() < .5 

  gen double b`i' = uniform()  

  gen double y`i' = n`i' + .25 - .25*a`i' - .25*b`i' 

 

 } 

  

 noi Finalize 

 label data  "Regression GEE with linear predictor = -.25*a - .25*b  +.25"  

 note: GENERATED FOR:  xtgee y a b, i(id) t(t) fam(gauss) corr(`type') 

 

end 

 

 

 

 

 

program define MakeGEEgamma 

 

 args R type 

 local t = colsof(`R') 

 MakeCorrNorm `R' 

 

 noi di as err "No support for gamma yet" 

 exit 199  

 

 noi Finalize 

 label data  "Gamma GEE with linear predictor = 0.1x + 0.4"  

 note: GENERATED FOR:  xtgee y a b, i(id) t(t) fam(gamma) corr(`type') 

 

end 
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program define MakeGEEpoisson 

 

 args R type 

 local t = colsof(`R') 

  

 MakePoissonR `R' 

 MakeCorrNorm `R' 

  

  

 forvalues i=1/`t' { 

  gen double a`i' = uniform() < .5 

  gen double b`i' = uniform()  

  gen double y`i' = n`i' + .25 - .25*a`i' - .25*b`i' 

 

 } 

  

 noi di as err "No support for poisson yet" 

 exit 199 

 

 noi Finalize 

 label data  "Poisson GEE with linear predictor = 2*x + 3"  

 note: GENERATED FOR:  xtgee y a b, i(id) t(t) fam(poisson) corr(`type') 

 

end 

 

 

 

program define MakeGEElogistic 

 args R type 

 

 MakeBinaryR `R' 

 MakeCorrNorm `R' 

 

 

 * We have y1, ..., yn which are binary and have the desired correlation 

 * Now, we have to generate the predictors for the given outcomes.  This is  

 * backwards from the usual approach, but there is no way around it since we 

 * want to specify the correlation of the outcomes. 

 * 

 * WARNING:  Do not change the definition of the covariates to depend on the 

value of t 

 *           unless you change the manner in which observations are defined.  The 

code 

 *           below is not robust to defining predictor variables that are correlated with 

 *           the value of time. 
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 local t = colsof(`R') 

 

 forvalues i=1/`t' { 

  gen byte y`i' = (n`i' > 0) 

  gen double a`i' = . 

  gen double b`i' = . 

 

 } 

 

 d, short 

 local N = r(N) 

 forvalues i=1/`N' { 

  forvalues j=1/`t' { 

   local y = y`j'[`i'] 

   local flag 1  

   while `flag' { 

    local x1 = uniform() < .5 

    local x2 = uniform() 

    local eta = .25 - .25*`x1' -.25*`x2' 

    local mu = 1/(1+exp(-`eta')) 

    if (rbinomial(1,`mu') == `y') { 

     replace a`j' = `x1' in `i' 

     replace b`j' = `x2' in `i' 

     local flag = 0  

    } 

   } 

  } 

 } 

 

 noi Finalize 

 

 label data  "Logistic GEE with linear predictor = -.25a - .25b + .25"  

 

 note: GENERATED FOR:  xtgee y a b, i(id) t(t) fam(binomial) corr(`type') 

 

end 
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program define MakeGEEprobit 

 args R type 

 MakeBinaryR `R' 

 MakeCorrNorm `R' 

 

 * We have y1, ..., yn which are binary and have the desired correlation 

 * Now, we have to generate the predictors for the given outcomes.  This is  

 * backwards from the usual approach, but there is no way around it since we 

 * want to specify the correlation of the outcomes. 

 * 

 * WARNING:  Do not change the definition of the covariates to depend on the 

value of t 

 *           unless you change the manner in which observations are defined.  The 

code 

 *           below is not robust to defining predictor variables that are correlated with 

 *           the value of time. 

 

 local t = colsof(`R') 

 forvalues i=1/`t' { 

  gen byte y`i' = (n`i' > 0) 

  gen double a`i' = . 

  gen double b`i' = . 

 } 

 

 d, short 

 local N = r(N) 

 forvalues i=1/`N' { 

  forvalues j=1/`t' { 

   local y = y`j'[`i'] 

   local flag 1  

   while `flag' { 

    local x1 = uniform() < .5 

    local x2 = uniform() 

    local eta = .25 - .25*`x1' -.25*`x2' 

    local mu = invnorm(`eta') 

    if (rbinomial(1,`mu') == `y') { 

     replace a`j' = `x1' in `i' 

     replace b`j' = `x2' in `i' 

     local flag = 0  

    } 

   } 

  } 

 } 

 noi Finalize 

 label data  "Probit GEE with linear predictor = -.25*a -.25b + .25"  



www.manaraa.com

 

89 

 note: GENERATED FOR:  xtgee y a b, i(id) t(t)  fam(binomial) link(probit) 

corr(`type') 

end 

 

exit 

 

This program creates a dataset useful for panel data modeling. 
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